170 research outputs found
Use of Placebo and Nonoperative Control Groups in Surgical Trials : A Systematic Review and Meta-analysis
Importance: Nonspecific effects, particularly placebo effects, are thought to contribute significantly to the observed effect in surgical trials. Objective: To estimate the proportion of the observed effect of surgical treatment that is due to nonspecific effects (including the placebo effect). Data Sources: Published Cochrane reviews and updated, extended search of MEDLINE, Embase, and CENTRAL until March 2019. Study Selection: Published randomized placebo-controlled surgical trials and trials comparing the effect of the same surgical interventions with nonoperative controls (ie, no treatment, usual care, or exercise program). Data Extraction and Synthesis: Pairs of authors independently screened the search results, assessed full texts to identify eligible studies and the risk of bias of included studies, and extracted data. The proportion of all nonspecific effects was calculated as the change in the placebo control divided by the change in the active surgery and pooled in a random-effect meta-analysis. To estimate the magnitude of the placebo effect, we pooled the difference in outcome between placebo and nonoperative controls and used metaregression to estimate the association between the type of control group and the treatment effect (difference between the groups), adjusting for risk of bias, sample size, and type of outcome. Main Outcomes and Measures: Between- and within-group effect sizes expressed as Hedges g. Results: In this review, 100 trials were included comprising data from 62 trials with placebo controls (3 also included nonoperative controls), and 38 trials with nonoperative controls (32 interventions; 10699 participants). Risk of bias across trials was comparable except for performance and detection bias, which was high in trials with nonoperative controls. The mean nonspecific effects accounted for 67% (95% CI, 61% to 73%) of the observed change after surgery; however, this varied widely between different procedures. The estimated surgical placebo effect had a standardized mean difference (SMD) of 0.13 (95% CI, -0.26 to 0.51). Trials with placebo and nonoperative controls found comparable treatment effects (SMD, -0.09 [95% CI, -0.35 to 0.18]; 15 interventions; 73 between-group effects; adjusted analysis: SMD, -0.11 [95% CI, -0.37 to 0.15]). Conclusions and Relevance: In this review, the change in health state after surgery was composed largely of nonspecific effects, but no evidence supported a large placebo effect. Placebo-controlled surgical trials may be redundant when trials with nonoperative controls consistently report no substantial association from surgery compared with nonoperative treatment..publishedVersionPeer reviewe
Long -term feeding with high plant protein based diets in gilthead seabream (Sparus aurata, L.) leads to changes in the inflammatory and immune related gene expression at intestinal level
[EN] Background: In order to ensure sustainability of aquaculture production of carnivourous fish species such as the gilthead seabream (Sparus aurata, L.), the impact of the inclusion of alternative protein sources to fishmeal, including plants, has been assessed. With the aim of evaluating long-term effects of vegetable diets on growth and intestinal status of the on-growing gilthead seabream (initial weight = 129 g), three experimental diets were tested: a strict plant protein-based diet (VM), a fishmeal based diet (FM) and a plant protein-based diet with 15% of marine ingredients (squid and krill meal) alternative to fishmeal (VM+). Intestines were sampled after 154 days. Besides studying growth parameters and survival, the gene expression related to inflammatory response, immune system, epithelia integrity and digestive process was analysed in the foregut and hindgut sections, as well as different histological parameters in the foregut.
Results: There were no differences in growth performance (p = 0.2703) and feed utilization (p = 0.1536), although a greater fish mortality was recorded in the VM group (p = 0.0141). In addition, this group reported a lower expression in genes related to pro-inflammatory response, as Interleukine-1 beta (il1 beta, p = 0.0415), Interleukine-6 (il6, p = 0.0347) and cyclooxigenase-2 (cox2, p = 0.0014), immune-related genes as immunoglobulin M (igm, p = 0.0002) or bacterial defence genes as alkaline phosphatase (alp, p = 0.0069). In contrast, the VM+ group yielded similar survival rate to FM (p = 0.0141) and the gene expression patterns indicated a greater induction of the inflammatory and immune markers (il1 beta, cox2 and igm). However, major histological changes in gut were not detected.
Conclusions: Using plants as the unique source of protein on a long term basis, replacing fishmeal in aqua feeds for gilthead seabream, may have been the reason of a decrease in the level of different pro-inflammatory mediators (il1 beta, il6 and cox2) and immune-related molecules (igm and alp), which reflects a possible lack of local immune response at the intestinal mucosa, explaining the higher mortality observed. Krill and squid meal inclusion in vegetable diets, even at low concentrations, provided an improvement in nutrition and survival parameters compared to strictly plant protein based diets as VM, maybe explained by the maintenance of an effective immune response throughout the assay.The research has been partially funded by Vicerrectorat d'Investigacio, Innovacio i Transferencia of the Universitat Politecnica de Valencia, which belongs to the project Aquaculture feed without fishmeal (SP20120603). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.Estruch-Cucarella, G.; Collado, MC.; Monge-Ortiz, R.; Tomas-Vidal, A.; Jover Cerdá, M.; Peñaranda, D.; Perez Martinez, G.... (2018). Long -term feeding with high plant protein based diets in gilthead seabream (Sparus aurata, L.) leads to changes in the inflammatory and immune related gene expression at intestinal level. BMC Veterinary Research. 14. https://doi.org/10.1186/s12917-018-1626-6S14Hardy RW. Utilization of plant proteins in fish diets: effects of global demand and supplies of fishmeal. Aquac Res. 2010;41:770–6.Martínez-Llorens S, Moñino AV, Vidal AT, Salvador VJM, Pla Torres M, Jover Cerdá M, et al. Soybean meal as a protein source in gilthead sea bream (Sparus aurata L.) diets: effects on growth and nutrient utilization. Aquac Res. 2007;38(1):82–90.Tacon AGJ, Metian M. Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: trends and future prospects. Aquaculture. 2008;285:146–58.Bonaldo A, Roem AJ, Fagioli P, Pecchini A, Cipollini I, Gatta PP. Influence of dietary levels of soybean meal on the performance and gut histology of gilthead sea bream (Sparus aurata L.) and European sea bass (Dicentrarchus labrax L.). Aquac Res. 2008;39(9):970–8.Kissil G, Lupatsch I. Successful replacement of fishmeal by plant proteins in diets for the gilthead seabream, Sparus Aurata L. Isr J Aquac – Bamidgeh. 2004;56(3):188–99.Monge-Ortíz R, Martínez-Llorens S, Márquez L, Moyano FJ, Jover-Cerdá M, Tomás-Vidal A. Potential use of high levels of vegetal proteins in diets for market-sized gilthead sea bream (Sparus aurata). Arch Anim Nutr. 2016;70(2):155–72.Santigosa E, Sánchez J, Médale F, Kaushik S, Pérez-Sánchez J, Gallardo MA. Modifications of digestive enzymes in trout (Oncorhynchus mykiss) and sea bream (Sparus aurata) in response to dietary fish meal replacement by plant protein sources. Aquaculture. 2008;282:68–74.Santigosa E, García-Meilán I, Valentin JM, Pérez-Sánchez J, Médale F, Kaushik S, et al. Modifications of intestinal nutrient absorption in response to dietary fish meal replacement by plant protein sources in sea bream (Sparus aurata) and rainbow trout (Onchorynchus mykiss). Aquaculture. 2011;317:146–54.Sitjá-Bobadilla A, Peña-Llopis S, Gómez-Requeni P, Médale F, Kaushik S, Pérez-Sánchez J. Effect of fish meal replacement by plant protein sources on non-specific defence mechanisms and oxidative stress in gilthead sea bream (Sparus aurata). Aquaculture. 2005;249:387–400.Martínez-Llorens S, Baeza-Ariño R, Nogales-Mérida S, Jover-Cerdá M, Tomás-Vidal A. Carob seed germ meal as a partial substitute in gilthead sea bream (Sparus aurata) diets: amino acid retention, digestibility, gut and liver histology. Aquaculture. 2012;338-341:124–33.Baeza-Ariño R, Martínez-Llorens S, Nogales-Mérida S, Jover-Cerda M, Tomás-Vidal A. Study of liver and gut alterations in sea bream, Sparus aurata L., fed a mixture of vegetable protein concentrates. Aquac Res. 2014;47(2):460–71.Estruch G, Collado MC, Peñaranda DS, Tomás Vidal A, Jover Cerdá M, Pérez Martínez G, et al. Impact of fishmeal replacement in diets for gilthead sea bream (Sparus aurata) on the gastrointestinal microbiota determined by pyrosequencing the 16S rRNA gene. PLoS One. 2015;10(8):e0136389. https://doi.org/10.1371/journal.pone.0136389 .Fekete SG, Kellems RO. Interrelationship of feeding with immunity and parasitic infection: a review. Vet Med. 2007;52(4):131–43.Kiron V. Fish immune system and its nutritional modulation for preventive health care. Anim Feed Sci Technol. 2012;173(1–2):111–33.Minghetti M, Drieschner C, Bramaz N, Schug H, Schirmer K. A fish intestinal epithelial barrier model established from the rainbow trout (Oncorhynchus mykiss) cell line, RTgutGC. Cell Biol Toxicol. 2017;33:539–55.Cerezuela R, Meseguer J, Esteban MÁ. Effects of dietary inulin, Bacillus subtilis and microalgae on intestinal gene expression in gilthead seabream (Sparus aurata L.). Fish Shellfish Immunol. 2013;34(3):843–8.Couto A, Kortner TM, Penn M, Bakke AM, Krogdahl O-TA, et al. Effects of dietary soy saponins and phytosterols on gilthead sea bream (Sparus aurata) during the on-growing period. Anim Feed Sci Technol. 2014;198:203–14.Estensoro I, Calduch-Giner JA, Kaushik S, Pérez-Sánchez J, Sitjá-Bobadilla A. Modulation of the IgM gene expression and IgM immunoreactive cell distribution by the nutritional background in gilthead sea bream (Sparus aurata) challenged with Enteromyxum leei (Myxozoa). Fish Shellfish Immunol. 2012;33(2):401–10.Pérez-Sánchez J, Estensoro I, Redondo MJ, Calduch-Giner JA, Kaushik S, Sitjà-Bobadilla A. Mucins as diagnostic and prognostic biomarkers in a fish-parasite model: transcriptional and functional analysis. PLoS One. 2013;8(6):e65457.Reyes-Becerril M, Guardiola F, Rojas M, Ascencio-Valle F, Esteban MÁ. Dietary administration of microalgae Navicula sp. affects immune status and gene expression of gilthead seabream (Sparus aurata). Fish Shellfish Immunol. 2013;35(3):883–9.Pérez-Sánchez J, Benedito-Palos L, Estensoro I, Petropoulos Y, Calduch-Giner JA, Browdy CL, et al. Effects of dietary NEXT ENHANCE ® 150 on growth performance and expression of immune and intestinal integrity related genes in gilthead sea bream (Sparus aurata L.). Fish Shellfish Immunol. 2015;44:117–28.Estensoro I, Ballester-Lozano G, Benedito-Palos L, Grammes F, Martos-Sitcha JA, Mydland L-T, et al. Dietary butyrate helps to restore the intestinal status of a marine teleost (Sparus aurata) fed extreme diets low in fish meal and fish oil. PLoS One. 2016;11(11):1–21.Torrecillas S, Caballero MJ, Mompel D, Montero D, Zamorano MJ, Robaina L, et al. Disease resistance and response against Vibrio anguillarum intestinal infection in European seabass (Dicentrarchus labrax) fed low fish meal and fish oil diets. Fish Shellfish Immunol. 2017;67:302–11.Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C T method. Nat Protoc. 2008;3(6):1101–8.Omnes MH, Silva FCP, Moriceau J, Aguirre P, Kaushik S, Gatesoupe F-J. Influence of lupin and rapeseed meals on the integrity of digestive tract and organs in gilthead seabream (Sparus aurata L.) and goldfish (Carassius auratus L.) juveniles. Aquac Nutr. 2015;21:223–33.Francis G, Makkar HPS, Becker K. Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture. 2001;199:197–227.Gatlin DM III, Barrows FT, Brown P, Dabrowski K, Gaylord TG, Hardy RW, et al. Expanding the utilization of sustainable plant products in aquafeeds: a review. Aquac Res. 2007;38:551–79.Kader MA, Bulbul M, Koshio S, Ishikawa M, Yokoyama S, Nguyen BT, et al. Effect of complete replacement of fishmeal by dehulled soybean meal with crude attractants supplementation in diets for red sea bream, Pagrus major. Aquaculture. 2012;350-353:109–16.Gómez-Requeni P, Mingarro M, Calduch-Giner JA, Médale F, Martin SAM, Houlihan DF, et al. Protein growth performance, amino acid utilisation and somatotropic axis responsiveness to fish meal replacement by plant protein sources in gilthead sea bream (Sparus aurata). Aquaculture. 2004;232(1–4):493–510.Kader MA, Koshio S, Ishikawa M, Yokoyama S, Bulbul M. Supplemental effects of some crude ingredients in improving nutritive values of low fishmeal diets for red sea bream, Pagrus major. Aquaculture. 2010;308(3–4):136–44.Mai K, Li H, Ai Q, Duan Q, Xu W, Zhang C, et al. Effects of dietary squid viscera meal on growth and cadmium accumulation in tissues of Japanese seabass, Lateolabrax japonicus (Cuvier 1828). Aquac Res. 2006;37(11):1063–9.Peres H, Oliva-Teles A. The optimum dietary essential amino acid profile for gilthead seabream (Sparus aurata) juveniles. Aquaculture. 2009;296(1–2):81–6.Cho CY, Slinger SJ, Bayley HS. Bioenergetics of salmonid fishes: energy intake, expenditure and productivity. Comp Biochem Physiol Part B. 1982;73(1):25–41.Venou B, Alexis MN, Fountoulaki E, Haralabous J. Effects of extrusion and inclusion level of soybean meal on diet digestibility , performance and nutrient utilization of gilthead sea bream ( Sparus aurata ). Aquaculture. 2006;261:343–56.Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper-excel-based tool using pair-wise correlations. Biotechnol Lett. 2004;26:509–15.Terova G, Robaina L, Izquierdo M, Cattaneo A, Molinari S, Bernardini G, et al. PepT1 mRNA expression levels in sea bream (Sparus aurata) fed different plant protein sources. Springerplus. 2013;2:17.Bates JM, Akerlund J, Mittge E, Guillemin K. Intestinal alkaline phosphatase detoxifies lipopolysaccharide and prevents inflammation in zebrafish in response to the gut microbiota. Cell Host Microbe. 2007;2(6):371–82.Adamidou S, Nengas I, Henry M, Grigorakis K, Rigos G, Nikolopoulou D, et al. Growth, feed utilization, health and organoleptic characteristics of European seabass (Dicentrarchus labrax) fed extruded diets including low and high levels of three different legumes. Aquaculture. 2009;293(3–4):263–71.Daprà F, Gai F, Costanzo MT, Maricchiolo G, Micale V, Sicuro B, et al. Rice protein-concentrate meal as a potential dietary ingredient in practical diets for blackspot seabream Pagellus bogaraveo: a histological and enzymatic investigation. J Fish Biol. 2009;74(4):773–89.Overland M, Sorensen M, Storebakken T, Penn M, Krogdahl A, Skrede A. Pea protein concentrate substituting fish meal or soybean meal in diets for Atlantic salmon (Salmo salar)-effect on growth performance, nutrient digestibility, carcass composition, gut health, and physical feed quality. Aquaculture. 2009;288(3–4):305–11.Penn MH, Bendiksen EA, Campbell P, Krogdahl AS. High level of dietary pea protein concentrate induces enteropathy in Atlantic salmon (Salmo salar L.). Aquaculture. 2011;310(3–4):267–73.Hedrera MI, Galdames JA, Jimenez-Reyes MF, Reyes AE, Avendaño-Herrera R, Romero J, et al. Soybean meal induces intestinal inflammation in zebrafish larvae. PLoS One. 2013;8(7):1–10.Kokou F, Sarropoulou E, Cotou E, Rigos G, Henry M, Alexis M. Effects of fish meal replacement by a soybean protein on growth, histology, selected immune and oxidative status markers of Gilthead Sea bream, Sparus aurata. J World Aquac Soc. 2015;46(2):115–28.Kokou F, Sarropoulou E, Cotou E, Kentouri M, Alexis M, Rigos G. Effects of graded dietary levels of soy protein concentrate supplemented with methionine and phosphate on the immune and antioxidant responses of gilthead sea bream (Sparus aurata L.). Fish Shellfish Immunol. 2017;64:111–21.Calduch-Giner JA, Sitjà-Bobadilla A, Davey GC, Cairns MT, Kaushik S, Pérez-Sánchez J. Dietary vegetable oils do not alter the intestine transcriptome of gilthead sea bream (Sparus aurata), but modulate the transcriptomic response to infection with Enteromyxum leei. BMC Genomics. 2012;13(1):470.Piazzon MC, Galindo-Villegas J, Pereiro P, Estensoro I, Calduch-Giner JA, Gómez-Casado E, et al. Differential modulation of IgT and IgM upon parasitic, bacterial, viral, and dietary challenges in a perciform fish. Front Immunol. 2016;7. Article 637. https://doi.org/10.3389/fimmu.2016.00637 .Salinas I, Zhang Y, Sunyer JO. Mucosal immunoglobulins and B cells of teleost fish. Dev Comp Immunol. 2011;35(12):1346–65.Krogdahl A, Bakke-McKellep AM, Roed KH, Baeverfjord G. Feeding Atlantic salmon Salmo salar L. soybean products: effects on disease resistance (furunculosis), and lysozyme and IgM levels in the intestinal mucosa. Aquac Nutr. 2000;6:77–84.Chasiotis H, Effendi JC, Kelly SP. Occludin expression in goldfish held in ion-poor water. J Comp Physiol B Biochem Syst Environ Physiol. 2009;179(2):145–54.Chen KT, Malo MS, Beasley-Topliffe LK, Poelstra K, Millan JL, Mostafa G, et al. A role for intestinal alkaline phosphatase in the maintenance of local gut immunity. Dig Dis Sci. 2011;56(4):1020–7.Vaishnava S, Hooper LV. Alkaline phosphatase: keeping the peace at the gut epithelial surface. Cell Host Microbe. 2007;2(6):365–7.Tort L. Stress and immune modulation in fish. Dev Comp Immunol [internet]. Elsevier Ltd. 2011;35(12):1366–75.Martin SAM, Król E. Nutrigenomics and immune function in fish: new insights from omics technologies. Dev Comp Immunol. 2017;75:86–98.Burrells C, Williams PD, Southgate PJ, Crampton VO. Immunological , physiological and pathological responses of rainbow trout (Oncorhynchus mykiss) to increasing dietary concentrations of soybean proteins. Vet Immunol Immunopathol. 1999;72:277–88.Sahlmann C, Sutherland BJG, Kortner TM, Koop BF, Krogdahl Å, Bakke AM. Early response of gene expression in the distal intestine of Atlantic salmon (Salmo salar L.) during the development of soybean meal induced enteritis. Fish Shellfish Immunol. 2013;34(2):599–609.Esteban MÁ, Cuesta A, Ortuño J, Meseguer J. Immunomodulatory effects of dietary intake of chitin on gilthead seabream ( Sparus aurata L .) innate immune system. Fish Shellfish Immunol. 2001;11:303–15.Storebakken T, Kvien IS, Shearer KD, Grisdale-Helland B, Helland SJ. Estimation of gastrointestinal evacuation rate in Atlantic salmon (Salmo salar) using inert markers and collection of faeces by sieving: evacuation of diets with fish meal, soybean meal or bacterial meal. Aquaculture. 1999;172(3–4):291–9.Olsen RE, Myklebust R, Ringø E, Mayhew TM. The influences of dietary linseed oil and saturated fatty acids on caecal enterocytes in Arctic char (Salvelinus alpinus L.): a quantitative ultrastructural study. Fish Physiol Biochem. 2000;22(3):207–16.Heikkinen J, Vielma J, Kemiläinen O, Tiirola M, Eskelinen P, Kiuru T, et al. Effects of soybean meal based diet on growth performance, gut histopathology and intestinal microbiota of juvenile rainbow trout (Oncorhynchus mykiss). Aquaculture. 2006;261(1):259–68.Krogdahl A, Bakke-McKellep AM, Baeverfjord G. Effects of graded levels of standard soybean meal on intestinal structure, mucosal enzyme activities, and pancreatic response in Atlantic salmon (Salmo salar L.). Aquac Nutr. 2003;9:361–71.Cerezuela R, Fumanal M, Tapia-Paniagua ST, Meseguer J, Moriñigo MA, Esteban MA. Changes in intestinal morphology and microbiota caused by dietary administration of inulin and Bacillus subtilis in gilthead sea bream (Sparus aurata L.) specimens. Fish Shellfish Immunol. 2013;34(5):1063–70.Cerezuela R, Fumanal M, Tapia-Paniagua ST, Meseguer J, Moriñigo MÁ, Esteban MÁ. Histological alterations and microbial ecology of the intestine in gilthead seabream (Sparus aurata L.) fed dietary probiotics and microalgae. Cell Tissue Res. 2012;350(3):477–89.Deplancke B, Gaskins HR. Microbial modulation of innate defense: goblet cells and the intestinal mucus layer. Am J Clin Nutr. 2001;73(suppl):1131S–41S.Kokou F, Rigos G, Henry M, Kentouri M, Alexis M. Growth performance, feed utilization and non-specific immune response of gilthead sea bream (Sparus aurata L.) fed graded levels of a bioprocessed soybean meal. Aquaculture. 2012;364-365:74–81
Discutindo a educação ambiental no cotidiano escolar: desenvolvimento de projetos na escola formação inicial e continuada de professores
A presente pesquisa buscou discutir como a Educação Ambiental (EA) vem sendo trabalhada, no Ensino Fundamental e como os docentes desta escola compreendem e vem inserindo a EA no cotidiano escolar., em uma escola estadual do município de Tangará da Serra/MT, Brasil. Para tanto, realizou-se entrevistas com os professores que fazem parte de um projeto interdisciplinar de EA na escola pesquisada. Verificou-se que o projeto da escola não vem conseguindo alcançar os objetivos propostos por: desconhecimento do mesmo, pelos professores; formação deficiente dos professores, não entendimento da EA como processo de ensino-aprendizagem, falta de recursos didáticos, planejamento inadequado das atividades. A partir dessa constatação, procurou-se debater a impossibilidade de tratar do tema fora do trabalho interdisciplinar, bem como, e principalmente, a importância de um estudo mais aprofundado de EA, vinculando teoria e prática, tanto na formação docente, como em projetos escolares, a fim de fugir do tradicional vínculo “EA e ecologia, lixo e horta”.Facultad de Humanidades y Ciencias de la Educació
Kameleonttikulttuuri : kirjoituksia muistojen, elämysten, perinteiden ja perikadon ääreltä
Tässä uutukaisteoksessa, Kameleonttikulttuuri. Kirjoituksia muistojen, elämysten, perinteiden ja perikadon ääreltä, ollaan niin kameleonttikulttuurin kuin Haaga-Helia ammattikorkeakoulun palvelu- ja vieraanvaraisuusteemojen sekä matkailu-, ravintola- ja elämystutkimuksenkin alkulähteillä
Use of placebo and nonoperative control groups in surgical trials:a systematic review and meta-analysis
Abstract
Importance: Nonspecific effects, particularly placebo effects, are thought to contribute significantly to the observed effect in surgical trials.
Objective: To estimate the proportion of the observed effect of surgical treatment that is due to nonspecific effects (including the placebo effect).
Data Sources: Published Cochrane reviews and updated, extended search of MEDLINE, Embase, and CENTRAL until March 2019.
Study Selection: Published randomized placebo-controlled surgical trials and trials comparing the effect of the same surgical interventions with nonoperative controls (ie, no treatment, usual care, or exercise program).
Data Extraction and Synthesis: Pairs of authors independently screened the search results, assessed full texts to identify eligible studies and the risk of bias of included studies, and extracted data. The proportion of all nonspecific effects was calculated as the change in the placebo control divided by the change in the active surgery and pooled in a random-effect meta-analysis. To estimate the magnitude of the placebo effect, we pooled the difference in outcome between placebo and nonoperative controls and used metaregression to estimate the association between the type of control group and the treatment effect (difference between the groups), adjusting for risk of bias, sample size, and type of outcome.
Main Outcomes and Measures: Between- and within-group effect sizes expressed as Hedges g.
Results: In this review, 100 trials were included comprising data from 62 trials with placebo controls (3 also included nonoperative controls), and 38 trials with nonoperative controls (32 interventions; 10 699 participants). Risk of bias across trials was comparable except for performance and detection bias, which was high in trials with nonoperative controls. The mean nonspecific effects accounted for 67% (95% CI, 61% to 73%) of the observed change after surgery; however, this varied widely between different procedures. The estimated surgical placebo effect had a standardized mean difference (SMD) of 0.13 (95% CI, −0.26 to 0.51). Trials with placebo and nonoperative controls found comparable treatment effects (SMD, −0.09 [95% CI, −0.35 to 0.18]; 15 interventions; 73 between-group effects; adjusted analysis: SMD, −0.11 [95% CI, −0.37 to 0.15]).
Conclusions and Relevance: In this review, the change in health state after surgery was composed largely of nonspecific effects, but no evidence supported a large placebo effect. Placebo-controlled surgical trials may be redundant when trials with nonoperative controls consistently report no substantial association from surgery compared with nonoperative treatment
Au@AuPd Core-Alloyed Shell Nanoparticles for Enhanced Electrocatalytic Activity and Selectivity under Visible Light Excitation
Plasmonic catalysis has been employed to enhance molecular transformations under visible light excitation, leveraging the localized surface plasmon resonance (LSPR) in plasmonic nanoparticles. While plasmonic catalysis has been employed for accelerating reaction rates, achieving control over the reaction selectivity has remained a challenge. In addition, the incorporation of catalytic components into traditional plasmonic-catalytic antenna-reactor nanoparticles often leads to a decrease in optical absorption. To address these issues, this study focuses on the synthesis of bimetallic core@shell Au@AuPd nanoparticles (NPs) with ultralow loadings of palladium (Pd) into gold (Au) NPs. The goal is to achieve NPs with an Au core and a dilute alloyed shell containing both Au and Pd, with a low Pd content of around 10 atom %. By employing the (photo)electrocatalytic nitrite reduction reaction (NO2RR) as a model transformation, experimental and theoretical analyses show that this design enables enhanced catalytic activity and selectivity under visible light illumination. We found that the optimized Pd distribution in the alloyed shell allowed for stronger interaction with key adsorbed species, leading to improved catalytic activity and selectivity, both under no illumination and under visible light excitation conditions. The findings provide valuable insights for the rational design of antenna-reactor plasmonic-catalytic NPs with controlled activities and selectivity under visible light irradiation, addressing critical challenges to enable sustainable molecular transformations
- …