103 research outputs found

    A self-organized model for cell-differentiation based on variations of molecular decay rates

    Get PDF
    Systemic properties of living cells are the result of molecular dynamics governed by so-called genetic regulatory networks (GRN). These networks capture all possible features of cells and are responsible for the immense levels of adaptation characteristic to living systems. At any point in time only small subsets of these networks are active. Any active subset of the GRN leads to the expression of particular sets of molecules (expression modes). The subsets of active networks change over time, leading to the observed complex dynamics of expression patterns. Understanding of this dynamics becomes increasingly important in systems biology and medicine. While the importance of transcription rates and catalytic interactions has been widely recognized in modeling genetic regulatory systems, the understanding of the role of degradation of biochemical agents (mRNA, protein) in regulatory dynamics remains limited. Recent experimental data suggests that there exists a functional relation between mRNA and protein decay rates and expression modes. In this paper we propose a model for the dynamics of successions of sequences of active subnetworks of the GRN. The model is able to reproduce key characteristics of molecular dynamics, including homeostasis, multi-stability, periodic dynamics, alternating activity, differentiability, and self-organized critical dynamics. Moreover the model allows to naturally understand the mechanism behind the relation between decay rates and expression modes. The model explains recent experimental observations that decay-rates (or turnovers) vary between differentiated tissue-classes at a general systemic level and highlights the role of intracellular decay rate control mechanisms in cell differentiation.Comment: 16 pages, 5 figure

    Combined vertebral fracture assessment and bone mineral density measurement: a new standard in the diagnosis of osteoporosis in academic populations

    Get PDF
    Vertebral Fracture Analysis enables the detection of vertebral fractures in the same session as bone mineral density testing. Using this method in 2,424 patients, we found unknown vertebral fractures in approximately one out of each six patients with significant impact on management. The presence of osteoporotic vertebral fractures (VF) is an important risk factor for all future fractures independent of BMD. Yet, determination of the VF status has not become standard practice. Vertebral Fracture Assessment (VFA) is a new feature available on modern densitometers. In this study we aimed to determine the prevalence of VF using VFA in all patients referred for BMD testing in a university medical center and to evaluate its added clinical value. Prospective diagnostic evaluation study in 2,500 consecutive patients referred for BMD. Patients underwent VFA in supine position after BMD testing. Questionnaires were used to assess perceived added value of VFA. In 2,424 patients (1,573 women), results were evaluable. In 541 patients (22%), VFA detected a prevalent VF that was unknown in 69%. In women, the prevalence was 20% versus 27% found in men (p <0.0001). The prevalence of VF was 14% in patients with normal BMD (97/678), increased to 21% (229/1,100) in osteopenia and to 26% in those with osteoporosis (215/646) by WHO criteria. After excluding mild fractures VF prevalence was 13% (322/2,424). In 468 of 942 questionnaires (50% response rate), 27% of the referring physicians reported VFA results to impact on patient management. VFA is a patient friendly new tool with a high diagnostic yield, as it detected unknown VF in one out of each six patients, with significant impact on management. We believe these findings justify considering VFA in all new patients referred for osteoporosis assessment in similar populations

    AMD, an Automated Motif Discovery Tool Using Stepwise Refinement of Gapped Consensuses

    Get PDF
    Motif discovery is essential for deciphering regulatory codes from high throughput genomic data, such as those from ChIP-chip/seq experiments. However, there remains a lack of effective and efficient methods for the identification of long and gapped motifs in many relevant tools reported to date. We describe here an automated tool that allows for de novo discovery of transcription factor binding sites, regardless of whether the motifs are long or short, gapped or contiguous

    Reirradiation of head and neck cancer focusing on hypofractionated stereotactic body radiation therapy

    Get PDF
    Reirradiation is a feasible option for patients who do not otherwise have treatment options available. Depending on the location and extent of the tumor, reirradiation may be accomplished with external beam radiotherapy, brachytherapy, radiosurgery, or intensity modulated radiation therapy (IMRT). Although there has been limited experience with hypofractionated stereotactic radiotherapy (hSRT), it may have the potential for curative or palliative treatment due to its advanced precision technology, particularly for limited small lesion. On the other hand, severe late adverse reactions are anticipated with reirradiation than with initial radiation therapy. The risk of severe late complications has been reported to be 20- 40% and is related to prior radiotherapy dose, primary site, retreatment radiotherapy dose, treatment volume, and technique. Early researchers have observed lethal bleeding in such patients up to a rate of 14%. Recently, similar rate of 10-15% was observed for fatal bleeding with use of modern hSRT like in case of carotid blowout syndrome. To determine the feasibility and efficacy of reirradiation using modern technology, we reviewed the pertinent literature. The potentially lethal side effects should be kept in mind when reirradiation by hSRT is considered for treatment, and efforts should be made to minimize the risk in any future investigations

    Radiation exposure in X-ray-based imaging techniques used in osteoporosis

    Get PDF
    Recent advances in medical X-ray imaging have enabled the development of new techniques capable of assessing not only bone quantity but also structure. This article provides (a) a brief review of the current X-ray methods used for quantitative assessment of the skeleton, (b) data on the levels of radiation exposure associated with these methods and (c) information about radiation safety issues. Radiation doses associated with dual-energy X-ray absorptiometry are very low. However, as with any X-ray imaging technique, each particular examination must always be clinically justified. When an examination is justified, the emphasis must be on dose optimisation of imaging protocols. Dose optimisation is more important for paediatric examinations because children are more vulnerable to radiation than adults. Methods based on multi-detector CT (MDCT) are associated with higher radiation doses. New 3D volumetric hip and spine quantitative computed tomography (QCT) techniques and high-resolution MDCT for evaluation of bone structure deliver doses to patients from 1 to 3 mSv. Low-dose protocols are needed to reduce radiation exposure from these methods and minimise associated health risks

    SUMOylation by Pias1 Regulates the Activity of the Hedgehog Dependent Gli Transcription Factors

    Get PDF
    Hedgehog (Hh) signaling, a vital signaling pathway for the development and homeostasis of vertebrate tissues, is mediated by members of the Gli family of zinc finger transcription factors. Hh signaling increases the transcriptional activity of Gli proteins, at least in part, by inhibiting their proteolytic processing. Conversely, phosphorylation by cAMP-dependent protein kinase (PKA) inhibits Gli transcriptional activity by promoting their ubiquitination and proteolysis. Whether other post-translational modifications contribute to the regulation of Gli protein activity has been unclear.Here we provide evidence that all three Gli proteins are targets of small ubiquitin-related modifier (SUMO)-1 conjugation. Expression of SUMO-1 or the SUMO E3 ligase, Pias1, increased Gli transcriptional activity in cultured cells. Moreover, PKA activity reduced Gli protein SUMOylation. Strikingly, in the embryonic neural tube, the forced expression of Pias1 increased Gli activity and induced the ectopic expression of the Gli dependent gene Nkx2.2. Conversely, a point mutant of Pias1, that lacks ligase activity, blocked the endogenous expression of Nkx2.2.Together, these findings provide evidence that Pias1-dependent SUMOylation influences Gli protein activity and thereby identifies SUMOylation as a post-translational mechanism that regulates the hedgehog signaling pathway

    Evidence for Epithelial-Mesenchymal Transition in Cancer Stem Cells of Head and Neck Squamous Cell Carcinoma

    Get PDF
    Initiation, growth, recurrence, and metastasis of head and neck squamous cell carcinomas (HNSCC) have been related to the behavior of cancer stem cells (CSC) that can be identified by their aldehyde-dehydrogenase-isoform-1 (ALDH1) activity. We quantified and enriched ALDH1+ cells within HNSCC cell lines and subsequently characterized their phenotypical and functional properties like invasion capacity and epithelial-mesenchymal transition (EMT). Spheroid culture enriched CSC from five HNSCC cell lines by up to 5-fold. In spheroid-derived cells (SDC) and the parental monolayer-derived cell line ALDH1, CD44, CD24, E-Cadherin, α-SMA, and Vimentin expression was compared by flow-cytometry and immunofluorescence together with proliferation and cell cycle analysis. Invasion activity was evaluated by Matrigel assay and expression of stemness-related transcription factors (TF) Nanog, Oct3/4, Sox2 and EMT-related genes Snail1 and 2, and Twist by real-time PCR. All cell lines formed spheroids that could self-renew and be serially re-passaged. ALDH1 expression was significantly higher in SDC. ALDH1+ cells showed increased colony-formation. The proportion of cells with a putative CSC marker constellation of CD44+/CD24− was highly variable (0.5% to 96%) in monolayer and spheroid cultures and overlapped in 0%–33% with the CD44+/CD24−/ALDH1+ cell subset. SDC had significantly higher invading activity. mRNA of the stemness-related genes Sox2, Nanog, and Oct3/4 was significantly increased in SDC of all cell lines. Twist was significantly increased in two while Snail2 showed a significant increase in one and a significant decrease in SDC of two cell lines. SDC had a higher G0 phase proportion, showed high-level expression of α-SMA and Vimentin, but significantly decreased E-Cadherin expression. HNSCC-lines harbor potential CSC, characterized by ALDH1 and stemness marker TF expression as well as properties like invasiveness, quiescence, and EMT. CSC can be enriched by anchorage-independent culture techniques, which may be important for the investigation of their contribution to therapy resistance, tumor recurrence and metastasis

    Early Embryonic Vascular Patterning by Matrix-Mediated Paracrine Signalling: A Mathematical Model Study

    Get PDF
    During embryonic vasculogenesis, endothelial precursor cells of mesodermal origin known as angioblasts assemble into a characteristic network pattern. Although a considerable amount of markers and signals involved in this process have been identified, the mechanisms underlying the coalescence of angioblasts into this reticular pattern remain unclear. Various recent studies hypothesize that autocrine regulation of the chemoattractant vascular endothelial growth factor (VEGF) is responsible for the formation of vascular networks in vitro. However, the autocrine regulation hypothesis does not fit well with reported data on in vivo early vascular development. In this study, we propose a mathematical model based on the alternative assumption that endodermal VEGF signalling activity, having a paracrine effect on adjacent angioblasts, is mediated by its binding to the extracellular matrix (ECM). Detailed morphometric analysis of simulated networks and images obtained from in vivo quail embryos reveals the model mimics the vascular patterns with high accuracy. These results show that paracrine signalling can result in the formation of fine-grained cellular networks when mediated by angioblast-produced ECM. This lends additional support to the theory that patterning during early vascular development in the vertebrate embryo is regulated by paracrine signalling

    Anti-HER-2 DNA vaccine protects Syrian hamsters against squamous cell carcinomas

    Get PDF
    This paper illustrates the efficacy of DNA vaccination through electroporation in the prevention of oral transplantable carcinoma in Syrian hamsters. At 21 and 7 days before tumour challenge, 19 hamsters were vaccinated with plasmids coding for the extracellular and transmembrane domains of rat HER-2 receptor (EC-TM plasmids), whereas 19 control hamsters were injected intramuscularly with the empty plasmid. Immediately following plasmid injection, hamsters of both groups received two square-wave 25 ms, 375 V cm−1 electric pulses via two electrodes placed on the skin of the injection area. At day 0, all hamsters were challenged in the submucosa of the right cheek pouch with HER-2-positive HCPC I cells established in vitro from an 7,12-dimethylbenz[a]anthracene-induced oral carcinoma. This challenge gave rise to HER-2-positive buccal neoplastic lesions in 14 controls (73.37%), compared with only seven (36.8%, P<0.0027) vaccinated hamsters. In addition, the vaccinated hamsters displayed both a stronger proliferative and cytotoxic response than the controls and a significant anti-HER-2 antibody response. Most of the hamsters that rejected the challenge displayed the highest antibody titres. These findings suggest that DNA vaccination may have a future in the prevention of HER-2-positive human oral cancer
    corecore