12 research outputs found
Boolean Dynamics with Random Couplings
This paper reviews a class of generic dissipative dynamical systems called
N-K models. In these models, the dynamics of N elements, defined as Boolean
variables, develop step by step, clocked by a discrete time variable. Each of
the N Boolean elements at a given time is given a value which depends upon K
elements in the previous time step.
We review the work of many authors on the behavior of the models, looking
particularly at the structure and lengths of their cycles, the sizes of their
basins of attraction, and the flow of information through the systems. In the
limit of infinite N, there is a phase transition between a chaotic and an
ordered phase, with a critical phase in between.
We argue that the behavior of this system depends significantly on the
topology of the network connections. If the elements are placed upon a lattice
with dimension d, the system shows correlations related to the standard
percolation or directed percolation phase transition on such a lattice. On the
other hand, a very different behavior is seen in the Kauffman net in which all
spins are equally likely to be coupled to a given spin. In this situation,
coupling loops are mostly suppressed, and the behavior of the system is much
more like that of a mean field theory.
We also describe possible applications of the models to, for example, genetic
networks, cell differentiation, evolution, democracy in social systems and
neural networks.Comment: 69 pages, 16 figures, Submitted to Springer Applied Mathematical
Sciences Serie
Time-aging time-stress superposition in soft glass under tensile deformation field
We have studied the tensile deformation behaviour of thin films of aging
aqueous suspension of Laponite, a model soft glassy material, when subjected to
a creep flow field generated by a constant engineering normal stress. Aqueous
suspension of Laponite demonstrates aging behaviour wherein it undergoes time
dependent enhancement of its elastic modulus as well as its characteristic
relaxation time. However, under application of the normal stress, the rate of
aging decreases and in the limit of high stress, the aging stops with the
suspension now undergoing a plastic deformation. Overall, it is observed that
the aging that occurs over short creep times at small normal stresses is same
as the aging that occurs over long creep times at large normal stresses. This
observation allows us to suggest an aging time - process time - normal stress
superposition principle, which can predict rheological behaviour at longer
times by carrying out short time tests.Comment: 26 pages, 7 figures, To appear in Rheologica Act