15 research outputs found

    Transcriptional Profiling of Non-Small Cell Lung Cancer Cells with Activating EGFR Somatic Mutations

    Get PDF
    Activating somatic mutations in epidermal growth factor receptor (EGFR) confer unique biologic features to non-small cell lung cancer (NSCLC) cells, but the transcriptional mediators of EGFR in this subgroup of NSCLC have not been fully elucidated.Here we used genetic and pharmacologic approaches to elucidate the transcriptomes of NSCLC cell lines. We transcriptionally profiled a panel of EGFR-mutant and -wild-type NSCLC cell lines cultured in the presence or absence of an EGFR tyrosine kinase inhibitor. Hierarchical analysis revealed that the cell lines segregated on the basis of EGFR mutational status (mutant versus wild-type), and expression signatures were identified by supervised analysis that distinguished the cell lines based on mutational status (wild-type versus mutant) and type of mutation (L858R versus Delta746-750). Using an EGFR mutation-specific expression signature as a probe, we mined the gene expression profiles of two independent cohorts of NSCLC patients and found the signature in a subset. EGFR tyrosine kinase inhibitor treatment regulated the expression of multiple genes, and pharmacologic inhibition of the protein products of two of them (PTGS2 and EphA2) inhibited anchorage-independent growth in EGFR-mutant NSCLC cells.We have elucidated genes not previously associated with EGFR-mutant NSCLC, two of which enhanced the clonogenicity of these cells, distinguishing these mediators from others previously shown to maintain cell survival. These findings have potential clinical relevance given the availability of pharmacologic tools to inhibit the protein products of these genes

    Candidate pathways and genes for prostate cancer: a meta-analysis of gene expression data

    Get PDF
    <p>Abstract</p> <p>Backgound</p> <p>The genetic mechanisms of prostate tumorigenesis remain poorly understood, but with the advent of gene expression array capabilities, we can now produce a large amount of data that can be used to explore the molecular and genetic mechanisms of prostate tumorigenesis.</p> <p>Methods</p> <p>We conducted a meta-analysis of gene expression data from 18 gene array datasets targeting transition from normal to localized prostate cancer and from localized to metastatic prostate cancer. We functionally annotated the top 500 differentially expressed genes and identified several candidate pathways associated with prostate tumorigeneses.</p> <p>Results</p> <p>We found the top differentially expressed genes to be clustered in pathways involving integrin-based cell adhesion: integrin signaling, the actin cytoskeleton, cell death, and cell motility pathways. We also found integrins themselves to be downregulated in the transition from normal prostate tissue to primary localized prostate cancer. Based on the results of this study, we developed a collagen hypothesis of prostate tumorigenesis. According to this hypothesis, the initiating event in prostate tumorigenesis is the age-related decrease in the expression of collagen genes and other genes encoding integrin ligands. This concomitant depletion of integrin ligands leads to the accumulation of ligandless integrin and activation of integrin-associated cell death. To escape integrin-associated death, cells suppress the expression of integrins, which in turn alters the actin cytoskeleton, elevates cell motility and proliferation, and disorganizes prostate histology, contributing to the histologic progression of prostate cancer and its increased metastasizing potential.</p> <p>Conclusion</p> <p>The results of this study suggest that prostate tumor progression is associated with the suppression of integrin-based cell adhesion. Suppression of integrin expression driven by integrin-mediated cell death leads to increased cell proliferation and motility and increased tumor malignancy.</p

    Extravasation of leukocytes in comparison to tumor cells

    Get PDF
    The multi-step process of the emigration of cells from the blood stream through the vascular endothelium into the tissue has been termed extravasation. The extravasation of leukocytes is fairly well characterized down to the molecular level, and has been reviewed in several aspects. Comparatively little is known about the extravasation of tumor cells, which is part of the hematogenic metastasis formation. Although the steps of the process are basically the same in leukocytes and tumor cells, i.e. rolling, adhesion, transmigration (diapedesis), the molecules that are involved are different. A further important difference is that leukocyte interaction with the endothelium changes the endothelial integrity only temporarily, whereas tumor cell interaction leads to an irreversible damage of the endothelial architecture. Moreover, tumor cells utilize leukocytes for their extravasation as linkers to the endothelium. Thus, metastasis formation is indirectly susceptible to localization signals that are literally specific for the immune system. We herein compare the extravasation of leukocytes and tumor cells with regard to the involved receptors and the localization signals that direct the cells to certain organs and sites of the body

    Analysis of Normal-Tumour Tissue Interaction in Tumours: Prediction of Prostate Cancer Features from the Molecular Profile of Adjacent Normal Cells

    No full text
    Statistical modelling, in combination with genome-wide expression profiling techniques, has demonstrated that the molecular state of the tumour is sufficient to infer its pathological state. These studies have been extremely important in diagnostics and have contributed to improving our understanding of tumour biology. However, their importance in in-depth understanding of cancer patho-physiology may be limited since they do not explicitly take into consideration the fundamental role of the tissue microenvironment in specifying tumour physiology. Because of the importance of normal cells in shaping the tissue microenvironment we formulate the hypothesis that molecular components of the profile of normal epithelial cells adjacent the tumour are predictive of tumour physiology. We addressed this hypothesis by developing statistical models that link gene expression profiles representing the molecular state of adjacent normal epithelial cells to tumour features in prostate cancer. Furthermore, network analysis showed that predictive genes are linked to the activity of important secreted factors, which have the potential to influence tumor biology, such as IL1, IGF1, PDGF BB, AGT, and TGFβ

    Inflammatory chemokines and metastasis – tracing the accessory

    Full text link
    The tumor microenvironment consists of stromal cells and leukocytes that contribute to cancer progression. Cross-talk between tumor cells and their microenvironment is facilitated by a variety of soluble factors, including growth factors, cytokines such as chemokines. Due to a wide expression of chemokine receptors on cells in the tumor microenvironment, including tumor cells, chemokines affect various processes such as leukocyte recruitment, angiogenesis, tumor cell survival, tumor cell adhesion, proliferation, vascular permeability, immune suppression, invasion and metastasis. Inflammatory chemokines are instrumental players in cancer-related inflammation and significantly contribute to numerous steps during metastasis. Recruitment of myeloid-derived cells to metastatic sites is mainly mediated by the inflammatory chemokines CCL2 and CCL5. Tumor cell homing and extravasation from the circulation in distant organs are also regulated by inflammatory chemokines. Recent experimental evidence demonstrated that besides leukocyte recruitment, tumor cell-derived CCL2 directly activated endothelial cells and together with monocytes facilitated tumor cell extravasation, in a CCL2- and CCL5-dependent manner. Furthermore, CX3CL1 expression in the bone facilitated metastasis of CX3CR1 expressing tumor cells to this site. Current findings in preclinical models strongly suggest that inflammatory chemokines play an important role during metastasis and targeting of the chemokine axis might have a therapeutic potential
    corecore