182 research outputs found

    Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap

    Full text link
    We demonstrate lasing oscillation in a three-dimensional photonic crystal nanocavity. The laser is realized by coupling a cavity mode, which is localized in a complete photonic bandgap and exhibits the highest quality factor of ~38,500, with high-quality semiconductor quantum dots. We show a systematic change in the laser characteristics, including the threshold and the spontaneous emission coupling factor by controlling the crystal size, which consequently changes the strength of photon confinement in the third dimension. This opens up many interesting possibilities for realizing future ultimate light sources and three-dimensional integrated photonic circuits and for more fundamental studies of physics in the field of cavity quantum electrodynamics.Comment: 14 pages, 4 figure

    Processing of Abstract Rule Violations in Audition

    Get PDF
    The ability to encode rules and to detect rule-violating events outside the focus of attention is vital for adaptive behavior. Our brain recordings reveal that violations of abstract auditory rules are processed even when the sounds are unattended. When subjects performed a task related to the sounds but not to the rule, rule violations impaired task performance and activated a network involving supratemporal, parietal and frontal areas although none of the subjects acquired explicit knowledge of the rule or became aware of rule violations. When subjects tried to behaviorally detect rule violations, the brain's automatic violation detection facilitated intentional detection. This shows the brain's capacity for abstraction – an important cognitive function necessary to model the world. Our study provides the first evidence for the task-independence (i.e. automaticity) of this ability to encode abstract rules and for its immediate consequences for subsequent mental processes

    Analysis of Large Phenotypic Variability of EEC and SHFM4 Syndromes Caused by K193E Mutation of the TP63 Gene

    Get PDF
    EEC (ectrodactyly, ectodermal dysplasia, clefting; OMIM 604292) is an autosomal dominant developmental disorder resulting mainly from pathogenic mutations of the DNA-binding domain (DBD) of the TP63 gene. In this study, we showed that K193E mutation in nine affected individuals of a four-generation kindred with a large degree of phenotypic variability causes four different syndromes or TP63-related disorders: EEC, Ectrodactyly-ectodermal dysplasia (EE), isolated ectodermal dysplasia, and isolated Split Hand/Foot Malformation type 4 (SHFM4). Genotype-phenotype and DBD structural modeling analysis showed that the K193-located loop L2-A is associated with R280 through hydrogen bonding interactions, while R280 mutations also often cause large phenotypic variability of EEC and SHFM4. Thus, we speculate that K193 and several other DBD mutation-associated syndromes may share similar pathogenic mechanisms, particularly in the case of the same mutation with different phenotypes. Our study and others also suggest that the phenotypic variability of EEC is attributed, at least partially, to genetic and/or epigenetic modifiers

    Characteristic Evolution and Matching

    Get PDF
    I review the development of numerical evolution codes for general relativity based upon the characteristic initial value problem. Progress in characteristic evolution is traced from the early stage of 1D feasibility studies to 2D axisymmetric codes that accurately simulate the oscillations and gravitational collapse of relativistic stars and to current 3D codes that provide pieces of a binary black hole spacetime. Cauchy codes have now been successful at simulating all aspects of the binary black hole problem inside an artificially constructed outer boundary. A prime application of characteristic evolution is to extend such simulations to null infinity where the waveform from the binary inspiral and merger can be unambiguously computed. This has now been accomplished by Cauchy-characteristic extraction, where data for the characteristic evolution is supplied by Cauchy data on an extraction worldtube inside the artificial outer boundary. The ultimate application of characteristic evolution is to eliminate the role of this outer boundary by constructing a global solution via Cauchy-characteristic matching. Progress in this direction is discussed.Comment: New version to appear in Living Reviews 2012. arXiv admin note: updated version of arXiv:gr-qc/050809

    Selective Attention Increases Both Gain and Feature Selectivity of the Human Auditory Cortex

    Get PDF
    Background. An experienced car mechanic can often deduce what’s wrong with a car by carefully listening to the sound of the ailing engine, despite the presence of multiple sources of noise. Indeed, the ability to select task-relevant sounds for awareness, whilst ignoring irrelevant ones, constitutes one of the most fundamental of human faculties, but the underlying neural mechanisms have remained elusive. While most of the literature explains the neural basis of selective attention by means of an increase in neural gain, a number of papers propose enhancement in neural selectivity as an alternative or a complementary mechanism. Methodology/Principal Findings. Here, to address the question whether pure gain increase alone can explain auditory selective attention in humans, we quantified the auditory cortex frequency selectivity in 20 healthy subjects by masking 1000-Hz tones by continuous noise masker with parametrically varying frequency notches around the tone frequency (i.e., a notched-noise masker). The task of the subjects was, in different conditions, to selectively attend to either occasionally occurring slight increments in tone frequency (1020 Hz), tones of slightly longer duration, or ignore the sounds. In line with previous studies, in the ignore condition, the global field power (GFP) of event-related brain responses at 100 ms from the stimulus onset to the 1000-Hz tones was suppressed as a function of the narrowing of the notch width. During the selective attention conditions, the suppressant effect of the noise notch width on GFP was decreased, but as a function significantly different from a multiplicative one expected on the basis of simple gain model of selective attention. Conclusions/Significance. Our results suggest that auditory selective attention in humans cannot be explained by a gai

    The effects of acute tryptophan depletion on costly information sampling: impulsivity or aversive processing?

    Get PDF
    RATIONALE: The neurotransmitter serotonin (5-HT) has been implicated in both aversive processing and impulsivity. Reconciling these accounts, recent studies have demonstrated that 5-HT is important for punishment-induced behavioural inhibition. These studies focused on situations where actions lead directly to punishments. However, decision-making often involves making tradeoffs between small 'local' costs and larger 'global' losses. OBJECTIVE: We aimed to distinguish whether 5-HT promotes avoidance of local losses, global losses, or both, in contrast to an overall effect on reflection impulsivity. We further examined the influence of individual differences in sub-clinical depression, anxiety and impulsivity on global and local loss avoidance. METHODS: Healthy volunteers (N = 21) underwent an acute tryptophan depletion procedure in a double-blind, placebo-controlled crossover design. We measured global and local loss avoidance in a decision-making task where subjects could sample information at a small cost to avoid making incorrect decisions, which resulted in large losses. RESULTS: Tryptophan depletion removed the suppressive effects of small local costs on information sampling behaviour. Sub-clinical depressive symptoms produced effects on information sampling similar to (but independent from) those of tryptophan depletion. Dispositional anxiety was related to global loss avoidance. However, trait impulsivity was unrelated to information sampling. CONCLUSIONS: The current findings are consistent with recent theoretical work that characterises 5-HT as pruning a tree of potential decisions, eliminating options expected to lead to aversive outcomes. Our results extend this account by proposing that 5-HT promotes reflexive avoidance of relatively immediate aversive outcomes, potentially at the expense of more globally construed future losses

    Chilling-Dependent Release of Seed and Bud Dormancy in Peach Associates to Common Changes in Gene Expression

    Get PDF
    Reproductive meristems and embryos display dormancy mechanisms in specialized structures named respectively buds and seeds that arrest the growth of perennial plants until environmental conditions are optimal for survival. Dormancy shows common physiological features in buds and seeds. A genotype-specific period of chilling is usually required to release dormancy by molecular mechanisms that are still poorly understood. In order to find common transcriptional pathways associated to dormancy release, we analyzed the chilling-dependent expression in embryos of certain genes that were previously found related to dormancy in flower buds of peach. We propose the presence of short and long-term dormancy events affecting respectively the germination rate and seedling development by independent mechanisms. Short periods of chilling seem to improve germination in an abscisic acid-dependent manner, whereas the positive effect of longer cold treatments on physiological dwarfing coincides with the accumulation of phenylpropanoids in the seed

    Role of Basal Ganglia Circuits in Resisting Interference by Distracters: A swLORETA Study

    Get PDF
    BACKGROUND: The selection of task-relevant information requires both the focalization of attention on the task and resistance to interference from irrelevant stimuli. Both mechanisms rely on a dorsal frontoparietal network, while focalization additionally involves a ventral frontoparietal network. The role of subcortical structures in attention is less clear, despite the fact that the striatum interacts significantly with the frontal cortex via frontostriatal loops. One means of investigating the basal ganglia's contributions to attention is to examine the features of P300 components (i.e. amplitude, latency, and generators) in patients with basal ganglia damage (such as in Parkinson's disease (PD), in which attention is often impaired). Three-stimulus oddball paradigms can be used to study distracter-elicited and target-elicited P300 subcomponents. METHODOLOGY/PRINCIPAL FINDINGS: In order to compare distracter- and target-elicited P300 components, high-density (128-channel) electroencephalograms were recorded during a three-stimulus visual oddball paradigm in 15 patients with early PD and 15 matched healthy controls. For each subject, the P300 sources were localized using standardized weighted low-resolution electromagnetic tomography (swLORETA). Comparative analyses (one-sample and two-sample t-tests) were performed using SPM5® software. The swLORETA analyses showed that PD patients displayed fewer dorsolateral prefrontal (DLPF) distracter-P300 generators but no significant differences in target-elicited P300 sources; this suggests dysfunction of the DLPF cortex when the executive frontostriatal loop is disrupted by basal ganglia damage. CONCLUSIONS/SIGNIFICANCE: Our results suggest that the cortical attention frontoparietal networks (mainly the dorsal one) are modulated by the basal ganglia. Disruption of this network in PD impairs resistance to distracters, which results in attention disorders
    corecore