2,880 research outputs found
Should physical activity recommendations be ethnicity-specific? Evidence from a cross-sectional study of south Asian and European men
Background
Expert bodies and health organisations recommend that adults undertake at least 150 min.weekβ1 of moderate-intensity physical activity (MPA). However, the underpinning data largely emanate from studies of populations of European descent. It is unclear whether this level of activity is appropriate for other ethnic groups, particularly South Asians, who have increased cardio-metabolic disease risk compared to Europeans. The aim of this study was to explore the level of MPA required in South Asians to confer a similar cardio-metabolic risk profile to that observed in Europeans undertaking the currently recommended MPA level of 150 min.weekβ1.<p></p>
Methods
Seventy-five South Asian and 83 European men, aged 40β70, without cardiovascular disease or diabetes had fasted blood taken, blood pressure measured, physical activity assessed objectively (using accelerometry), and anthropometric measures made. Factor analysis was used to summarise measured risk biomarkers into underlying latent βfactorsβ for glycaemia, insulin resistance, lipid metabolism, blood pressure, and overall cardio-metabolic risk. Age-adjusted regression models were used to determine the equivalent level of MPA (in bouts of β₯10 minutes) in South Asians needed to elicit the same value in each factor as Europeans undertaking 150 min.weekβ1 MPA.<p></p>
Findings
For all factors, except blood pressure, equivalent MPA values in South Asians were significantly higher than 150 min.weekβ1; the equivalent MPA value for the overall cardio-metabolic risk factor was 266 (95% CI 185-347) min.weekβ1.<p></p>
Conclusions
South Asian men may need to undertake greater levels of MPA than Europeans to exhibit a similar cardio-metabolic risk profile, suggesting that a conceptual case can be made for ethnicity-specific physical activity guidance. Further study is needed to extend these findings to women and to replicate them prospectively in a larger cohort.<p></p>
Rotating BPS black holes in matter-coupled AdS(4) supergravity
Using the general recipe given in arXiv:0804.0009, where all timelike
supersymmetric solutions of N=2, D=4 gauged supergravity coupled to abelian
vector multiplets were classified, we construct genuine rotating supersymmetric
black holes in AdS(4) with nonconstant scalar fields. This is done for the
SU(1,1)/U(1) model with prepotential F=-iX^0X^1. In the static case, the black
holes are uplifted to eleven dimensions, and generalize the solution found in
hep-th/0105250 corresponding to membranes wrapping holomorphic curves in a
Calabi-Yau five-fold. The constructed rotating black holes preserve one quarter
of the supersymmetry, whereas their near-horizon geometry is one half BPS.
Moreover, for constant scalars, we generalize (a supersymmetric subclass of)
the Plebanski-Demianski solution of cosmological Einstein-Maxwell theory to an
arbitrary number of vector multiplets. Remarkably, the latter turns out to be
related to the dimensionally reduced gravitational Chern-Simons action.Comment: 23 pages, uses JHEP3.cl
Hamiltonian dynamics for Einstein's action in G0 limit
The Hamiltonian analysis for the Einstein's action in limit is
performed. Considering the original configuration space without involve the
usual variables we show that the version for Einstein's action
is devoid of physical degrees of freedom. In addition, we will identify the
relevant symmetries of the theory such as the extended action, the extended
Hamiltonian, the gauge transformations and the algebra of the constraints. As
complement part of this work, we develop the covariant canonical formalism
where will be constructed a closed and gauge invariant symplectic form. In
particular, using the geometric form we will obtain by means of other way the
same symmetries that we found using the Hamiltonian analysis
The selectivity, voltage-dependence and acid sensitivity of the tandem pore potassium channel TASK-1 : contributions of the pore domains
We have investigated the contribution to ionic
selectivity of residues in the selectivity filter and pore
helices of the P1 and P2 domains in the acid sensitive
potassium channel TASK-1. We used site directed mutagenesis
and electrophysiological studies, assisted by structural
models built through computational methods. We have
measured selectivity in channels expressed in Xenopus
oocytes, using voltage clamp to measure shifts in reversal
potential and current amplitudes when Rb+ or Na+ replaced
extracellular K+. Both P1 and P2 contribute to selectivity,
and most mutations, including mutation of residues in the
triplets GYG and GFG in P1 and P2, made channels nonselective.
We interpret the effects of theseβand of other
mutationsβin terms of the way the pore is likely to be
stabilised structurally. We show also that residues in the
outer pore mouth contribute to selectivity in TASK-1.
Mutations resulting in loss of selectivity (e.g. I94S, G95A)
were associated with slowing of the response of channels to
depolarisation. More important physiologically, pH sensitivity
is also lost or altered by such mutations. Mutations
that retained selectivity (e.g. I94L, I94V) also retained their
response to acidification. It is likely that responses both to
voltage and pH changes involve gating at the selectivity filter
BPS black holes in N=2 D=4 gauged supergravities
We construct and analyze BPS black hole solutions in gauged N=2, D=4
supergravity with charged hypermultiplets. A class of solutions can be found
through spontaneous symmetry breaking in vacua that preserve maximal
supersymmetry. The resulting black holes do not carry any hair for the scalars.
We demonstrate this with explicit examples of both asymptotically flat and
anti-de Sitter black holes. Next, we analyze the BPS conditions for
asymptotically flat black holes with scalar hair and spherical or axial
symmetry. We find solutions only in cases when the metric contains ripples and
the vector multiplet scalars become ghost-like. We give explicit examples that
can be analyzed numerically. Finally, we comment on a way to circumvent the
ghost-problem by introducing also fermionic hair.Comment: 40 pages, 2 figures; v2 references added; v3 minor changes, published
versio
Epithelial Membrane Protein-2 Promotes Endometrial Tumor Formation through Activation of FAK and Src
Endometrial cancer is the most common gynecologic malignancy diagnosed among women in developed countries. One recent biomarker strongly associated with disease progression and survival is epithelial membrane protein-2 (EMP2), a tetraspan protein known to associate with and modify surface expression of certain integrin isoforms. In this study, we show using a xenograft model system that EMP2 expression is necessary for efficient endometrial tumor formation, and we have started to characterize the mechanism by which EMP2 contributes to this malignant phenotype. In endometrial cancer cells, the focal adhesion kinase (FAK)/Src pathway appears to regulate migration as measured through wound healing assays. Manipulation of EMP2 levels in endometrial cancer cells regulates the phosphorylation of FAK and Src, and promotes their distribution into lipid raft domains. Notably, cells with low levels of EMP2 fail to migrate and poorly form tumors in vivo. These findings reveal the pivotal role of EMP2 in endometrial cancer carcinogenesis, and suggest that the association of elevated EMP2 levels with endometrial cancer prognosis may be causally linked to its effect on integrin-mediated signaling
Unexpectedly high pressure for molecular dissociation in liquid hydrogen by electronic simulation
The study of the high pressure phase diagram of hydrogen has continued with renewed effort for about one century as it remains a fundamental challenge for experimental and theoretical techniques. Here we employ an efficient molecular dynamics based on the quantum Monte Carlo method, which can describe accurately the electronic correlation and treat a large number of hydrogen atoms, allowing a realistic and reliable prediction of thermodynamic properties. We find that the molecular liquid phase is unexpectedly stable, and the transition towards a fully atomic liquid phase occurs at much higher pressure than previously believed. The old standing problem of low-temperature atomization is, therefore, still far from experimental reach
Impacts of COVID-19 on the Energy System
This Briefing Paper explores the impact the COVID-19 pandemic had on the UKβs energy sector over the course of the first government-mandated national lockdown that began on 23 March 2020. Research from several aspects of the Integrated Development of Low-carbon Energy Systems (IDLES) programme at Imperial College London is presented in one overarching paper. The main aim is to determine what lessons can be learnt from that lockdown period, given the unique set of challenges it presented in our daily lives and the changes it brought about in energy demand, supply, and use. Valuable insights are gained into how working-from-home policies, electric vehicles, and low-carbon grids can be implemented, incentivised, and managed effectively
Insights from Amphioxus into the Evolution of Vertebrate Cartilage
Central to the story of vertebrate evolution is the origin of the vertebrate head, a problem difficult to approach using paleontology and comparative morphology due to a lack of unambiguous intermediate forms. Embryologically, much of the vertebrate head is derived from two ectodermal tissues, the neural crest and cranial placodes. Recent work in protochordates suggests the first chordates possessed migratory neural tube cells with some features of neural crest cells. However, it is unclear how and when these cells acquired the ability to form cellular cartilage, a cell type unique to vertebrates. It has been variously proposed that the neural crest acquired chondrogenic ability by recruiting proto-chondrogenic gene programs deployed in the neural tube, pharynx, and notochord. To test these hypotheses we examined the expression of 11 amphioxus orthologs of genes involved in neural crest chondrogenesis. Consistent with cellular cartilage as a vertebrate novelty, we find that no single amphioxus tissue co-expresses all or most of these genes. However, most are variously co-expressed in mesodermal derivatives. Our results suggest that neural crest-derived cartilage evolved by serial cooption of genes which functioned primitively in mesoderm
- β¦