1,763 research outputs found
Cholesterol promotes interaction of the protein CLIC1 with phospholipid monolayers at the air–water interface
© 2016 by the authors; licensee MDPI, Basel, Switzerland. CLIC1 is a Chloride Intracellular Ion Channel protein that exists either in a soluble state in the cytoplasm or as a membrane bound protein. Members of the CLIC family are largely soluble proteins that possess the intriguing property of spontaneous insertion into phospholipid bilayers to form integral membrane ion channels. The regulatory role of cholesterol in the ion‐channel activity of CLIC1 in tethered lipid bilayers was previously assessed using impedance spectroscopy. Here we extend this investigation by evaluating the influence of cholesterol on the spontaneous membrane insertion of CLIC1 into Langmuir film monolayers prepared using 1‐palmitoyl‐2‐oleoylphosphatidylcholine, 1‐palmitoyl‐2‐oleoyl‐sn‐glycero‐3‐phospho‐ethanolamine and 1‐palmitoyl‐2‐oleoyl‐sn‐glycero‐3‐phospho‐L‐serine alone or in combination with cholesterol. The spontaneous membrane insertion of CLIC1 was shown to be dependent on the presence of cholesterol in the membrane. Furthermore, pre‐incubation of CLIC1 with cholesterol prior to its addition to the Langmuir film, showed no membrane insertion even in monolayers containing cholesterol, suggesting the formation of a CLIC1‐cholesterol pre‐complex. Our results therefore suggest that CLIC1 membrane interaction involves CLIC1 binding to cholesterol located in the membrane for its initial docking followed by insertion. Subsequent structural rearrangements of the protein would likely also be required along with oligomerisation to form functional ion channels
Spontaneous surface adsorption of aqueous graphene oxide by synergy with surfactants.
The spontaneous adsorption of graphene oxide (GO) sheets at the air-water interface is explored using X-ray reflectivity (XRR) measurements. As a pure aqueous dispersion, GO sheets do not spontaneously adsorb at the air-water interface due to their high negative surface potential (-60 mV) and hydrophilic functionality. However, when incorporated with surfactant molecules at optimal ratios and loadings, GO sheets can spontaneously be driven to the surface. It is hypothesised that surfactant molecules experience favourable attractive interactions with the surfaces of GO sheets, resulting in co-assembly that serves to render the sheets surface active. The GO/surfactant composites then collectively adsorb at the air-water interface, with XRR analysis suggesting an interfacial structure comprising surfactant tailgroups in air and GO/surfactant headgroups in water for a combined thickness of 30-40 Å, depending on the surfactant used. Addition of too much surfactant appears to inhibit GO surface adsorption by saturating the interface, and low loadings of GO/surfactant composites (even at optimal ratios) do not show significant adsorption indicating a partitioning effect. Lastly, surfactant chemistry is also a key factor dictating adsorption capacity of GO. The zwitterionic surfactant oleyl amidopropyl betaine causes marked increases in GO surface activity even at very low concentrations (≤0.2 mM), whereas non-ionic surfactants such as Triton X-100 and hexaethyleneglycol monododecyl ether require higher concentrations (ca. 1 mM) in order to impart spontaneous adsorption of the sheets. Anionic surfactants do not enhance GO surface activity presumably due to like-charge repulsions that prevent co-assembly. This work provides useful insight into the synergy between GO sheets and molecular amphiphiles in aqueous systems for enhancing the surface activity of GO, and can be used to inform system formulation for developing water-friendly, surface active composites based around atomically thin materials
Who will use pre-exposure prophylaxis (PrEP) and why?: Understanding PrEP awareness and acceptability amongst men who have sex with men in the UK – a mixed methods study
Background:
Recent clinical trials suggest that pre-exposure prophylaxis (PrEP) may reduce HIV transmission by up to 86% for men who have sex with men (MSM), whilst relatively high levels of PrEP acceptability have been reported to date. This study examines PrEP awareness amongst sub-groups of MSM communities and acceptability amongst MSM in a low prevalence region (Scotland, UK), using a mixed methods design.
Methods:
Quantitative surveys of n = 690 MSM recruited online via social and sociosexual media were analysed using descriptive statistics and multivariate logistic regression. In addition, n = 10 in-depth qualitative interviews with MSM were analysed thematically.
Results:
Under one third (29.7%) of MSM had heard of PrEP, with awareness related to living in large cities, degree level education, commercial gay scene use and reporting an HIV test in the last year. Just under half of participants (47.8%) were likely to use PrEP if it were available but there was no relationship between PrEP acceptability and previous PrEP awareness. Younger men (18–25 years) and those who report higher risk UAI were significantly more likely to say they would use PrEP. Qualitative data described specific PrEP scenarios, illustrating how risk, patterns of sexual practice and social relationships could affect motivation for and nature of PrEP use.
Conclusion:
These findings suggest substantial interest PrEP amongst MSM reporting HIV risk behaviours in Scotland. Given the Proud results, there is a strong case to investigate PrEP implementation within the UK. However, it appears that disparities in awareness have already emerged along traditional indicators of inequality. Our research identifies the need for comprehensive support when PrEP is introduced, including a key online component, to ensure equity of awareness across diverse MSM communities (e.g. by geography, education, gay scene use and HIV proximity), as well as to responding to the diverse informational and sexual health needs of all MSM communities
Tuneable interfacial surfactant aggregates mimic lyotropic phases and facilitate large scale nanopatterning.
It is shown that the air-liquid interface can be made to display the same rich curvature phenomena as common lyotropic liquid crystal systems. Through mixing an insoluble, naturally occurring, branched fatty acid, with an unbranched fatty acid of the same length, systematic variation in the packing constraints at the air-water interface could be obtained. The combination of atomic force microscopy and neutron reflectometry is used to demonstrate that the water surface exhibits significant tuneable topography. By systematic variation of the two fatty acid proportions, ordered arrays of monodisperse spherical caps, cylindrical sections, and a mesh phase are all observed, as well as the expected lamellar structure. The tuneable deformability of the air-water interface permits this hitherto unexplored topological diversity, which is analogous to the phase elaboration displayed by amphiphiles in solution. It offers a wealth of novel possibilities for the tailoring of nanostructure
Regulation of the Membrane Insertion and Conductance Activity of the Metamorphic Chloride Intracellular Channel Protein CLIC1 by Cholesterol
The Chloride Intracellular ion channel protein CLIC1 has the ability to spontaneously insert into lipid membranes from a soluble, globular state. The precise mechanism of how this occurs and what regulates this insertion is still largely unknown, although factors such as pH and redox environment are known contributors. In the current study, we demonstrate that the presence and concentration of cholesterol in the membrane regulates the spontaneous insertion of CLIC1 into the membrane as well as its ion channel activity. The study employed pressure versus area change measurements of Langmuir lipid monolayer films; and impedance spectroscopy measurements using tethered bilayer membranes to monitor membrane conductance during and following the addition of CLIC1 protein. The observed cholesterol dependent behaviour of CLIC1 is highly reminiscent of the cholesterol-dependent-cytolysin family of bacterial pore-forming proteins, suggesting common regulatory mechanisms for spontaneous protein insertion into the membrane bilayer. © 2013 Valenzuela et al
Smooth deuterated cellulose films for the visualisation of adsorbed bio-macromolecules.
Novel thin and smooth deuterated cellulose films were synthesised to visualize adsorbed bio-macromolecules using contrast variation neutron reflectivity (NR) measurements. Incorporation of varying degrees of deuteration into cellulose was achieved by growing Gluconacetobacter xylinus in deuterated glycerol as carbon source dissolved in growth media containing D2O. The derivative of deuterated cellulose was prepared by trimethylsilylation(TMS) in ionic liquid(1-butyl-3-methylimidazolium chloride). The TMS derivative was dissolved in toluene for thin film preparation by spin-coating. The resulting film was regenerated into deuterated cellulose by exposure to acidic vapour. A common enzyme, horseradish peroxidase (HRP), was adsorbed from solution onto the deuterated cellulose films and visualized by NR. The scattering length density contrast of the deuterated cellulose enabled accurate visualization and quantification of the adsorbed HRP, which would have been impossible to achieve with non-deuterated cellulose. The procedure described enables preparing deuterated cellulose films that allows differentiation of cellulose and non-deuterated bio-macromolecules using NR
Groups whose word problem is a Petri net language
There has been considerable interest in exploring the connections between the word problem of a finitely generated group as a formal language and the algebraic structure of the group. However, there are few complete characterizations that tell us precisely which groups have their word problem in a specified class of languages. We investigate which finitely generated groups have their word problem equal to a language accepted by a Petri net and give a complete classification, showing that a group has such a word problem if and only if it is virtually abelian
Evidence of the Key Role of H<inf>3</inf>O<sup>+</sup> in Phospholipid Membrane Morphology
© 2016 American Chemical Society. This study explains the importance of the phosphate moiety and H3O+ in controlling the ionic flux through phospholipid membranes. We show that despite an increase in the H3O+ concentration when the pH is decreased, the level of ionic conduction through phospholipid bilayers is reduced. By modifying the lipid structure, we show the dominant determinant of membrane conduction is the hydrogen bonding between the phosphate oxygens on adjacent phospholipids. The modulation of conduction with pH is proposed to arise from the varying H3O+ concentrations altering the molecular area per lipid and modifying the geometry of conductive defects already present in the membrane. Given the geometrical constraints that control the lipid phase structure of membranes, these area changes predict that organisms evolving in environments with different pHs will select for different phospholipid chain lengths, as is found for organisms near highly acidic volcanic vents (short chains) or in highly alkaline salt lakes (long chains). The stabilizing effect of the hydration shells around phosphate groups also accounts for the prevalence of phospholipids across biology. Measurement of ion permeation through lipid bilayers was made tractable using sparsely tethered bilayer lipid membranes with swept frequency electrical impedance spectroscopy and ramped dc amperometry. Additional evidence of the effect of a change in pH on lipid packing density is obtained from neutron reflectometry data of tethered membranes containing perdeuterated lipids
Awareness and willingness to use HIV pre-exposure prophylaxis amongst gay and bisexual men in Scotland: implications for biomedical HIV prevention
Objectives:<p></p>
To investigate the awareness of, and willingness to use, HIV Pre-Exposure Prophylaxis (PrEP), and willingness to take part in a PrEP study among gay and bisexual men in Scotland.<p></p>
Methods:<p></p>
Cross-sectional survey of 17 gay commercial venues in Glasgow and Edinburgh in May 2011 (N = 1515, 65.2% response rate); 1393 are included in the analyses.<p></p>
Results:<p></p>
Just under one-third of participants had heard of PrEP (n = 434; 31.2%), with awareness associated with being aged older than 35 years, talking to UAI partners about HIV, and with having had an HIV or STI test in the previous 12 months. Around half were willing to take part in a PrEP study (n = 695; 49.9%) or to take PrEP on a daily basis (n = 756; 54.3%). In multivariate analysis, willingness to take PrEP was associated with lower levels of education, regular gay scene attendance, ‘high-risk’ unprotected anal intercourse (UAI) and testing for HIV or STI in the previous 12 months. Reasons for not wanting to participate in a PrEP study or take PrEP included perceptions of low personal risk of HIV and concerns with using medication as an HIV prevention method.<p></p>
Conclusions:<p></p>
There is a willingness to engage in new forms of HIV prevention and research amongst a significant number of gay and bisexual men in Scotland. Future biomedical HIV interventions need to consider the links between sexual risk behaviour, testing, and potential PrEP use
Recommended from our members
Dye···TiO2 Interfacial Structure of Dye-Sensitised Solar Cell Working Electrodes Buried under a Solution of I-/I3- Redox Electrolyte
Dye-sensitised solar cells (DSCs) have niche prospects for electricity-generating windows that could equip buildings for energy-sustainable future cities. However, this ‘smart window’ technology is being held back by a lack of understanding in how the dye interacts with its device environment at the molecular level. A better appreciation of the dye⋯TiO2 interfacial structure of the DSC working electrodes would be particularly valuable since associated structure–function relationships could be established; these rules would provide a ‘toolkit’ for the molecular engineering of more suitable DSC dyes via rational design. Previous materials characterisation efforts have been limited to determining this interfacial structure within an environment exposed to air or situated in a solvent medium. This study is the first to reveal the structure of this buried interface within the functional device environment, and represents the first application of in situ neutron reflectometry to DSC research. By incorporating the electrolyte into the structural model of this buried interface, we reveal how lithium cations from the electrolyte constituents influence the dye⋯TiO2 binding configuration of an organic sensitiser, MK-44, via Li+ complexation to the cyanoacrylate group. This dye is the molecular congener of the high-performance MK-2 DSC dye, whose hexa-alkyl chains appear to stabilise it from Li+ complexation. Our in situ neutron reflectometry findings are built up from auxiliary structural models derived from ex situ X-ray reflectometry and corroborated via density functional theory and UV/vis absorption spectroscopy. Significant differences between the in situ and ex situ dye⋯TiO2 interfacial structures are found, highlighting the need to characterise the molecular structure of DSC working electrodes while in a fully assembled device.The authors wish to thank Andrew Nelson and Gerry Triani of ANSTO for their guidance on reflectometry data analysis and TiO2 deposition, respectively. We thank Shogo Mori from Shinshu University, Japan, and Nagatoshi Koumura from the National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan, for providing the MK-44 dye material for this work. We also acknowledge ANSTO for a part-funded PhD studentship, and Garry McIntyre therein for overseeing local project support. Neutron beamtime at ANSTO was provided under proposal DB3739. J. M. C. is grateful to the 1851 Royal Commission for the 2014 Design Fellowship, and Argonne National Laboratory where work done was supported by DOE Office of Science, Office of Basic Energy Sciences, under Contract no. DE-AC02-06CH11357. Y. G. thanks the Cambridge Overseas Trust for a PhD scholarship
- …