58 research outputs found

    Twisted Bethe equations from a twisted S-matrix

    Get PDF
    All-loop asymptotic Bethe equations for a 3-parameter deformation of AdS5/CFT4 have been proposed by Beisert and Roiban. We propose a Drinfeld twist of the AdS5/CFT4 S-matrix, together with c-number diagonal twists of the boundary conditions, from which we derive these Bethe equations. Although the undeformed S-matrix factorizes into a product of two su(2|2) factors, the deformed S-matrix cannot be so factored. Diagonalization of the corresponding transfer matrix requires a generalization of the conventional algebraic Bethe ansatz approach, which we first illustrate for the simpler case of the twisted su(2) principal chiral model. We also demonstrate that the same twisted Bethe equations can alternatively be derived using instead untwisted S-matrices and boundary conditions with operatorial twists.Comment: 42 pages; v2: a new appendix on sl(2) grading, 2 additional references, and some minor changes; v3: improved Appendix D, additional references, and further minor changes, to appear in JHE

    Pulsating Strings in Lunin-Maldacena Backgrounds

    Full text link
    We consider pulsating strings in Lunin-Maldacena backgrounds, specifically in deformed Minkowski spacetime and deformed AdS_5xS^5. We find the relation between the energy and the oscillation number of the pulsating string when the deformation is small. Since the oscillation number is an adiabatic invariant it can be used to explore the regime of highly excited string states. We then quantize the string and look for such a sector. For the deformed Minkowski background we find a precise match with the classical results if the oscillation number is quantized as an even number. For the deformed AdS_5xS^5 we find a contribution which depends on the deformation parameter.Comment: 16 pages, 2 figures, typos fixe

    Spinning strings and integrable spin chains in the AdS/CFT correspondence

    Get PDF
    In this introductory review we discuss dynamical tests of the AdS_5 x S^5 string/N=4 super Yang-Mills duality. After a brief introduction to AdS/CFT we argue that semiclassical string energies yield information on the quantum spectrum of the string in the limit of large angular momenta on the S^5. The energies of the folded and circular spinning string solutions rotating on a S^3 within the S^5 are derived, which yield all loop predictions for the dual gauge theory scaling dimensions. These follow from the eigenvalues of the dilatation operator of N=4 super Yang-Mills in a minimal SU(2) subsector and we display its reformulation in terms of a Heisenberg s=1/2 spin chain along with the coordinate Bethe ansatz for its explicit diagonalization. In order to make contact to the spinning string energies we then study the thermodynamic limit of the one-loop gauge theory Bethe equations and demonstrate the matching with the folded and closed string result at this loop order. Finally the known gauge theory results at higher-loop orders are reviewed and the associated long-range spin chain Bethe ansatz is introduced, leading to an asymptotic all-loop conjecture for the gauge theory Bethe equations. This uncovers discrepancies at the three-loop order between gauge theory scaling dimensions and string theory energies and the implications of this are discussed. Along the way we comment on further developments and generalizations of the subject and point to the relevant literature.Comment: 40 pages, invited contribution to Living Reviews in Relativity. v2: improvements in the text and references adde

    p-wave Holographic Superconductors and five-dimensional gauged Supergravity

    Full text link
    We explore five-dimensional N=4{\cal N}=4 SU(2)×U(1)SU(2)\times U(1) and N=8{\cal N}=8 SO(6) gauged supergravities as frameworks for condensed matter applications. These theories contain charged (dilatonic) black holes and 2-forms which have non-trivial quantum numbers with respect to U(1) subgroups of SO(6). A question of interest is whether they also contain black holes with two-form hair with the required asymptotic to give rise to holographic superconductivity. We first consider the N=4{\cal N}=4 case, which contains a complex two-form potential AμνA_{\mu\nu} which has U(1) charge ±1\pm 1. We find that a slight generalization, where the two-form potential has an arbitrary charge qq, leads to a five-dimensional model that exhibits second-order superconducting transitions of p-wave type where the role of order parameter is played by AμνA_{\mu\nu}, provided q5.6q \gtrsim 5.6. We identify the operator that condenses in the dual CFT, which is closely related to N=4{\cal N}=4 Super Yang-Mills theory with chemical potentials. Similar phase transitions between R-charged black holes and black holes with 2-form hair are found in a generalized version of the N=8{\cal N}=8 gauged supergravity Lagrangian where the two-forms have charge q1.8q\gtrsim 1.8.Comment: 35 pages, 14 figure

    The dual string sigma-model of the SU_q(3) sector

    Full text link
    In four-dimensional N=4 super Yang-Mills (SYM) the SU(3) sub-sector spanned by purely holomorphic fields is isomorphic to the corresponding mixed one spanned by both holomorphic and antiholomorphic fields. This is no longer the case when one considers the marginally deformed N=4 SYM. The mixed SU(3) sector marginally deformed by a complex parameter beta, i.e. SU_q(3) with q=e^{2 i\pi\beta}, has been shown to be integrable at one-loop hep-th/0703150, while it is not the case for the corresponding purely holomorphic one. Moreover, the marginally deformed N=4 SYM also has a gravity dual constructed by Lunin and Maldacena in hep-th/0502086. However, the mixed SU_q(3) sector has not been studied from the supergravity point of view. Hence in this note, for the case of purely imaginary marginal β\beta-deformations, we compute the superstring SU_q(3) \sigma-model in the fast spinning string limit and show that, for rational spinning strings, it reproduces the energy computed via Bethe equations.Comment: 20 page

    Holographic Wilsonian flows and emergent fermions in extremal charged black holes

    Full text link
    We study holographic Wilsonian RG in a general class of asymptotically AdS backgrounds with a U(1) gauge field. We consider free charged Dirac fermions in such a background, and integrate them up to an intermediate radial distance, yielding an equivalent low energy dual field theory. The new ingredient, compared to scalars, involves a `generalized' basis of coherent states which labels a particular half of the fermion components as coordinates or momenta, depending on the choice of quantization (standard or alternative). We apply this technology to explicitly compute RG flows of charged fermionic operators and their composites (double trace operators) in field theories dual to (a) pure AdS and (b) extremal charged black hole geometries. The flow diagrams and fixed points are determined explicitly. In the case of the extremal black hole, the RG flows connect two fixed points at the UV AdS boundary to two fixed points at the IR AdS_2 region. The double trace flow is shown, both numerically and analytically, to develop a pole singularity in the AdS_2 region at low frequency and near the Fermi momentum, which can be traced to the appearance of massless fermion modes on the low energy cut-off surface. The low energy field theory action we derive exactly agrees with the semi-holographic action proposed by Faulkner and Polchinski in arXiv:1001.5049 [hep-th]. In terms of field theory, the holographic version of Wilsonian RG leads to a quantum theory with random sources. In the extremal black hole background the random sources become `light' in the AdS_2 region near the Fermi surface and emerge as new dynamical degrees of freedom.Comment: 37 pages (including 8 pages of appendix), 10 figures and 2 table

    On the Rotating and Oscillating strings in (AdS3×S3)ϰ(AdS_3\times S^3)_{\varkappa}

    Full text link
    We study rigidly rotating strings in the ϰ\varkappa-deformed AdS3×S3AdS_3 \times S^3 background. We find out two classes of solutions corresponding to the giant magnon and single spike solutions of the string rotating in two Sϰ2S^2_{\varkappa} subspace of rotations reduced along two different isometries. We verify that the dispersion relations reduce to the well known relation in the ϰ0\varkappa\rightarrow 0 limit. We further study some oscillating string solutions in the Sϰ3S^3_{\varkappa} subspace.Comment: 20 pages, clarifications added, version to appear in JHE
    corecore