22 research outputs found

    Increased toxicity of methamphetamine in morphine-dependent mice

    No full text
    . The effect of methamphetamine on morphine-dependent mice was investigated by calculating the LD50 (i.p.), measuring motor activity, anorectic actions, and body temperature. 2. Methamphetamine was more toxic in morphine-dependent mice (LD50 = 20.6 mg/kg) than in normal mice (LD50 = 43.2 mg/kg). 3. Methamphetamine-induced locomotor activity was greater in morphinized than in nonmorphinized mice at doses of 2.5 and 5 mg/kg i.p. 4. Methamphetamine also increased the body temperature of morphinized mice more than that of normal mice (P < 0.05). 5. These findings suggest that methamphetamine is more toxic in morphine-dependent than in nondependent mice

    Reversal of cisplatin-induced carnitine deficiency and energy starvation by propionyl-L-carnitine in rat kidney tissues

    No full text
    The present study examined whether propionyl-L-carnitine (PLC) could prevent the development of cisplatin (CDDP)-induced acute renal failure in rats. 2. Forty adult male Wistar albino rats were divided into four groups. Rats in the first group were injected daily with normal saline (2.5 mL/kg, i.p.) for 10 consecutive days, whereas the second group received PLC (250 mg/kg, i.p.) for 10 consecutive days. Animals in the third group were injected daily with normal saline for 5 consecutive days before and after a single dose of CDDP (7 mg/kg, i.p.). Rats in the fourth group received a combination of PLC (250 mg/kg, i.p.) for 5 consecutive days before and after a single dose of CDDP (7 mg/kg, i.p.). On Day 6 following CDDP treatment, animals were killed and serum and kidneys were isolated for analysis. 3. Injection of CDDP resulted in a significant increase in serum creatinine, blood urea nitrogen (BUN), thiobarbituric acid-reactive substances (TBARS) and total nitrate/nitrite (NOx), as well as a significant decrease in reduced glutathione (GSH), total carnitine, ATP and ATP/ADP in kidney tissues. 4. Administration of PLC significantly attenuated the nephrotoxic effects of CDDP, manifested as normalization of the CDDP-induced increase in serum creatinine, BUN, TBARS and NOx and the CDDP-induced decrease in total carnitine, GSH, ATP and ATP/ADP in kidney tissues. 5. Histopathological examination of kidney tissues from CDDP-treated rats showed severe nephrotoxicity, in which 50-75% of glomeruli and renal tubules exhibited massive degenerative changes. Interestingly, administration of PLC to CDDP-treated rats resulted in a significant improvement in glomeruli and renal tubules, in which less than 25% of glomeruli and renal tubules exhibited focal necrosis. 6. Data from the present study suggest that PLC prevents the development of CDDP-induced acute renal injury by a mechanism related, at least in part, to the ability of PLC to increase intracellular carnitine content, with a consequent improvement in mitochondrial oxidative phosphorylation and energy production, as well as its ability to decrease oxidative stress. This will open new perspectives for the use of PLC in the treatment of renal diseases associated with or secondary to carnitine deficiency

    Progression of diethylnitrosamine-induced hepatic carcinogenesis in carnitine-depleted rats

    No full text
    AIM: To investigate whether carnitine deficiency is a risk factor during the development of diethylnitrosamine (DENA)-induced hepatic carcinogenesis. METHODS: A total of 60 male Wistar albino rats were divided into six groups with 10 animals in each group. Rats in group I (control group) received a single intraperitoneal (i.p.) injection of normal saline. Animals in group 2 (carnitine-supplemented group) were given L-carnitine (200 mg/kg per day) in drinking water for 8 wk. Animals in group 3 (carnitine-depleted group) were given D-carnitine (200 mg/kg per day) and mildronate (200 mg/kg per day) in drinking water for 8 wk. Rats in group 4 (DENA group) were injected with a single dose of DENA (200 mg/kg, i.p.) and 2 wk later received a single dose of carbon tetrachloride (2 mL/kg) by gavage as 1:1 dilution in corn oil. Animals in group 5 (DENA-carnitine depleted group) received the same treatment as group 3 and group 4. Rats in group 6 (DENA-carnitine supplemented group) received the same treatment as group 2 and group 4.RESULTS: Administration of DENA resulted in a significant increase in alanine transaminase (ALT), gamma-glutamyl transferase (G-GT), alkaline phosphatase (ALP), total bilirubin, thiobarbituric acid reactive substances (TBARS) and total nitrate/ nitrite (NOx) and a significant decrease in reduced glutathione (GSH), glutathione peroxidase (GSHPx), catalase (CAT) and total carnitine content in liver tissues. In the carnitine-depleted rat model, DENA induced a dramatic increase in serum ALT, G-GT, ALP and total bilirubin, as well as a progressive reduction in total carnitine content in liver tissues. Interestingly, L-carnitine supplementation resulted in a complete reversal of the increase in liver enzymes, TBARS and NOx, and a decrease in total carnitine, GSH, GSHPx, and CAT induced by DENA, compared with the control values. Histopathological examination of liver tissues confirmed the biochemical data, where L-carnitine prevented DENA-induced hepatic carcinogenesis while D-carnitine-mildronate aggravated DENA-induced hepatic damage.CONCLUSION: Data from this study suggest for the first time that: (1) carnitine deficiency is a risk factor and should be viewed as a mechanism in DENA-induced hepatic carcinogenesis; (2) oxidative stress plays an important role but is not the only cause of DENA-induced hepatic carcinogenesis; and (3) long-term L-carnitine supplementation prevents the development of DENA-induced liver cancer. (C) 2009 The WIG Press and Baishideng. All rights reserved

    RosettaTMH: a method for membrane protein structure elucidation combining EPR distance restraints with assembly of transmembrane helices

    No full text

    A post-transcriptional mechanism pacing expression of neural genes with precursor cell differentiation status

    Get PDF
    Nervous system (NS) development relies on coherent upregulation of extensive sets of genes in a precise spatiotemporal manner. How such transcriptome-wide effects are orchestrated at the molecular level remains an open question. Here we show that 3′-untranslated regions (3′ UTRs) of multiple neural transcripts contain AU-rich cis-elements (AREs) recognized by tristetraprolin (TTP/Zfp36), an RNA-binding protein previously implicated in regulation of mRNA stability. We further demonstrate that the efficiency of ARE-dependent mRNA degradation declines in the neural lineage because of a decrease in the TTP protein expression mediated by the NS-enriched microRNA miR-9. Importantly, TTP downregulation in this context is essential for proper neuronal differentiation. On the other hand, inactivation of TTP in non-neuronal cells leads to dramatic upregulation of multiple NS-specific genes. We conclude that the newly identified miR-9/TTP circuitry limits unscheduled accumulation of neuronal mRNAs in non-neuronal cells and ensures coordinated upregulation of these transcripts in neurons
    corecore