622 research outputs found

    Impact of storage time on characteristics of synthetic greywater for two different pollutant strengths to be treated or recycled

    Get PDF
    Storage of greywater is controversial for environmental and health reasons. Artificial greywater was assessed after 2 and 7 days of storage time. Two different greywater pollutant strengths were statistically compared at each storage time. A negative significant (p < 0.05) correlation was evident with increasing storage time for the 5-day biochemical oxygen demand for more than 2 days. However, the concentrations of 5-day biochemical oxygen and chemical oxygen demands reduced significantly at 2 days of storage when compared with freshly prepared greywater. Biodegradability (5-day biochemical oxygen demand/chemical oxygen demand ratio) decreased significantly after storage to between 0.14 and 0.39. The nitrification process was improved significantly with increasing storage time concerning low strength greywater with a significant increase in the removal of ammonia-nitrogen and a non-significant decrease in the removal of nitrate-nitrogen. The correlation was significantly positive between ammonia-nitrogen and 5-day biochemical oxygen demand for stored greywater, while it was significantly negative between total suspended solids and both 5-day biochemical oxygen demand and dissolved oxygen. Significant reductions in colour, total suspended solids and turbidity were correlated positively with storage time. Precipitation of dissolved metals was suspected to occur in storing greywater by binding the inorganic components with the sediment and collide surfaces through adsorption, allowing a significant drop in concentrations of dissolved and undissolved metals with increasing storage time through sedimentation. Synthetic greywater of low mineral pollution had significantly higher removals for almost all concentrations compared with those for high concentrations. More advanced technologies for high trace element removal are required

    Biochemical performance modelling of non-vegetated and vegetated vertical subsurface-flow constructed wetlands treating municipal wastewater in hot and dry climate

    Get PDF
    Wastewater treatment and subsequent effluent recycling for non-drinking purposes such as irrigation contributes to the mitigation of the pressure on freshwater resources. In this study, two vertical sub-surface flow constructed wetland (VSSF-CW) pilot plants were operated to treat municipal wastewater and their effluents were reused for irrigation purposes. One of the wetlands was vegetated with Phragmites australis (Cav.) Trin. ex Steud. (common reed) to compare its efficiency of pollutant removals with the non-vegetated system, which had the same design. COMSOL Multiphysics 3.5a was operated for the Activated Sludge Model 2 (ASM2) to predict the chemical oxygen demand (COD) and ammonia-nitrogen (NH4-N) concentrations. The effluent quality of both treatment systems was assessed for several parameters. Computer simulations show a good compliance between the measured and predicted values of COD and NH4-N for the vegetated system. The calibrated model could be effectively used to predict the behaviours of those parameters as a function of time. Moreover, the effluents of both vegetated (VFp) and non-vegetated (VF) VSSF-CW were significantly (p <  0.05) improved compared to influent. Significant (p <  0.05) effects due to the presence of P. australis were observed for removals of total suspended solids (TSS), 5-day biochemical oxygen demand (BOD5), COD, NH4-N and ortho-phosphate-phosphorus (PO4-P). However, significant increases (p <  0.05) were noted for electrical conductivity (EC), total dissolved solids (TDS), nitrate-nitrogen (NO3-N) and sulphate (SO4) of both effluents compared to the raw wastewater. Except for EC, NH4-N and SO4, all water quality parameters complied with irrigation water standards

    New modified poly(ester amide) resins and their uses as a binder for surface coating with different applications

    Get PDF
    This paper aims to prepare a new modified poly(ester amide) (PEA) resins and use it as a binder for anticorrosive and antimicrobial coatings. Design/methodology/approach New modified PEA compositions were prepared based on 4-amino-N, N-bis(2-hydroxyethyl) benzamide (AHEB) as the ingredient source of the polyol used and evaluated as vehicles for surface coating. The structure of the modifier and PEA resin was confirmed by FT-IR, H¹-NMR, MW, thermogravimetric analysis and scanning electron microscope studies. Coatings of 50±5 µm thickness were applied to the surface of glass panels and mild steel strips by means of a brush. The coating performance of the resins was evaluated using international standard test methods and involved the measurement of phyisco-mechanical properties and chemical resistance. Findings The tests carried out revealed that the modified PEA based on AHEB enhanced both phyisco-mechanical and chemical properties. Also, the resins were incorporated within primer formulations and evaluated as anti-corrosive and antimicrobial single coatings. The results illustrate that the introduction of AHEB, within the resin structure, improved the film performance and enhances the corrosion resistance and antimicrobial activity performance of PEA resins. Practical implications The modified PEA compounds can be used as binders in paint formulations to improve the chemical, physical, corrosion resistance and antimicrobial activity properties. Originality/value Modified PEA resins are cheaper and can be used to replace other more expensive binders. These modified PEA resins can compensate successfully for the presence of many the anticorrosive and antimicrobial paint formulations, and thus, lower the costs. The main advantage of these binders is that they combine the properties of both polyester and polyamide resins based on nitrogenous compound, are of lower cost and they also overcome the disadvantages of both its counterparts. Also, they can be applied in other industrial applications

    Noise Level in Textile Industries: Case Study Al-Hillah Textile Factory-Company for Textile Industries, Al-Hillah-Babylon-Iraq

    Get PDF
    In this study, Al-Hillah Textile Factory, in Al-Hillah city-Iraq follows to State Company for Textile Industries was selected to study the intensity of noise in 2014. Measurements of the noise level were carried out in different workshops for each of the production stages including the spinning machinery workshop (parts 1 and 2), the rotating machinery room, the preparations room, and the textile machinery room (Roti model), weaving machines: Techmash model room Russian-made model room, Sheets' machinery room, and operator machines room; using two noise meters (model 2237 Fulfici). Fifty samples were collected in each part of these rooms to give realistic results for the noise level. After recording the noise level data, the highest and lowest values and the average of noise intensity readings were calculated in each of the rooms and compared with the global standards permitted by the EPA for industrial facilities. The results of this study showed that the general rate of noise intensity in all rooms exceeded the permissible limits, which impose a noise level of 65-70dB for such industrial establishments according to EPA recommendations in 2008

    Assessing L2 Argumentation in the UAE Context

    Get PDF
    In this rapidly changing world, argumentation and critical thinking skills are undeniably crucial for new generations of Emirati students. These skills lay the groundwork for a competitive economy, which is a priority for the UAE in its Vision 2021. Specifically, today’s modern workplaces require workers to evaluate different propositions and develop their own after weighing up these various ideas, and thus the ability to defend arguments in English has become increasingly important for UAE university students in English-medium universities as well as their future professional contexts. Despite this importance, research regarding argumentation and the related critical thinking skills is sorely lacking in the UAE. This chapter delineates how written argumentation was assessed in a timed essay in a mandatory argumentative writing course taken by university freshmen in a government university in the UAE, and how the feedback gleaned from this common assessment was mapped to the teaching curriculum to shed light on the teaching effectiveness and to provide directions for future teaching

    Assessment of urban green space dynamics influencing the surface urban heat stress using advanced geospatial techniques

    Get PDF
    Urban areas are mostly heterogeneous due to settlements and vegetation including forests, water bodies and many other land use and land cover (LULC) classes. Due to the overwhelming population pressure, urbanization, industrial works and transportation systems, urban areas have been suffering from a deficiency of green spaces, which leads to an increase in the variation of temperature in urban areas. This study investigates the conceptual framework design towards urban green space (UGS) and thermal variability over Kolkata and Howrah city using advanced remote sensing (RS) and geospatial methods. The low green space is located in the highly built-up area, which is influenced by thermal variations. Therefore, the heat stress index showed a high area located within the central, north, northwestern and some parts of the southern areas. The vegetated areas decreased by 8.62% during the ten years studied and the other land uses increased by 11.23%. The relationship between land surface temperature (LST) and the normalized difference vegetation index (NDVI) showed significant changes with R2 values between 0.48 (2010) and 0.23 (2020), respectively. The correlation among the LST and the normalized difference built-up index (NDBI) showed a notable level of change with R2 values between 0.38 (2010) and 0.61 (2020), respectively. The results are expected to contribute significantly towards urban development and planning, policymaking and support for key stakeholders responsible for the sustainable urban planning procedures and processes

    The puzzle of self-reported weight gain in a month of fasting (Ramadan) among a cohort of Saudi families in Jeddah, Western Saudi Arabia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>During Ramadan fast, approximately one billion Muslims abstain from food and fluid between the hours of sunrise to sunset, and usually eat a large meal after sunset and another meal before sunrise. Many studies reported good health-related outcomes of fasting including weight loss. The objective of this study is to identify the local pattern of expenditure on food consumption, dietary habits during Ramadan and correlate that to self-reported weight gain after Ramadan in a group of families in Jeddah, Western Saudi Arabia.</p> <p>Methods</p> <p>A Cross-section study using a pre-designed questionnaire to identify the local pattern of expenditure on food consumption, dietary habits during Ramadan and correlate that to self-reported weight gain after Ramadan in a representative cohort of Saudis living in Jeddah. It was piloted on 173 nutrition students and administered by them to their families.</p> <p>Results</p> <p>A total of 173 Saudi families were interviewed. One out of 5 indicated that their expenditure increases during Ramadan. Approximately two thirds of the respondents (59.5%) reported weight gain after Ramadan. When asked about their perspective explanations for that: 40% attributed that to types of foods being rich in fat and carbohydrates particularly date in (Sunset meal) 97.7% and rice in (Dawn meal) 80.9%. One third (31.2%) indicated that it was due to relative lack of physical exercise in Ramadan and 14.5% referred that to increase in food consumption. Two thirds (65.2%) of those with increased expenditure reported weight gain.</p> <p>Conclusion</p> <p>Surprisingly weight gain and not weight loss was reported after Ramadan by Saudis which indicates timely needed life-style and dietary modification programs for a population which reports one of the highest prevalence rates of diabetes.</p

    Theoretical study of Oldroyd-b visco-elastic fluid flow through curved pipes with slip effects in polymer flow processing

    Get PDF
    The characteristics of the flow field of both viscous and viscoelastic fluids passing through a curved pipe with a Navier slip boundary condition have been investigated analytically in the present study. The Oldroyd-B constitutive equation is employed to simulate realistic transport of dilute polymeric solutions in curved channels. In order to linearize the momentum and constitutive equations, a perturbation method is used in which the ratio of radius of cross section to the radius of channel curvature is employed as the perturbation parameter. The intensity of secondary and main flows is mainly affected by the hoop stress and it is demonstrated in the present study that both the Weissenberg number (the ratio of elastic force to viscous force) and slip coefficient play major roles in determining the strengths of both flows. It is also shown that as a result of an increment in slip coefficient, the position of maximum velocity markedly migrates away from the pipe center towards the outer side of curvature. Furthermore, results corresponding to Navier slip scenarios exhibit non-uniform distributions in both the main and lateral components of velocity near the wall which can notably vary from the inner side of curvature to the outer side. The present solution is also important in polymeric flow processing systems because of experimental evidence indicating that the no-slip condition can fail for these flows, which is of relevance to chemical engineers

    Dynamics and distribution of bacterial and archaeal communities in oil-contaminated temperate coastal mudflat mesocosms

    Get PDF
    Mudflats are ecologically important habitats that are susceptible to oil pollution, but intervention is difficult in these fine-grained sediments, and so clean-up usually relies on natural attenuation. Therefore, we investigated the impact of crude oil on the bacterial, diatom and archaeal communities within the upper parts of the diatom-dominated sediment and the biofilm that detached from the surface at high tide. Biodegradation of petroleum hydrocarbons was rapid, with a 50 % decrease in concentration in the 0–2-mm section of sediment by 3 days, indicating the presence of a primed hydrocarbon-degrading community. The biggest oil-induced change was in the biofilm that detached from the sediment, with increased relative abundance of several types of diatom and of the obligately hydrocarbonoclastic Oleibacter sp., which constituted 5 % of the pyrosequences in the oiled floating biofilm on day 3 compared to 0.6 % in the non-oiled biofilm. Differences in bacterial community composition between oiled and non-oiled samples from the 0–2-mm section of sediment were only significant at days 12 to 28, and the 2–4-mm-sediment bacterial communities were not significantly affected by oil. However, specific members of the Chromatiales were detected (1 % of sequences in the 2–4-mm section) only in the oiled sediment, supporting other work that implicates them in anaerobic hydrocarbon degradation. Unlike the Bacteria, the archaeal communities were not significantly affected by oil. In fact, changes in community composition over time, perhaps caused by decreased nutrient concentration and changes in grazing pressure, overshadowed the effect of oil for both Bacteria and Archaea. Many obligate hydrocarbonoclastic and generalist oil-degrading bacteria were isolated, and there was little correspondence between the isolates and the main taxa detected by pyrosequencing of sediment-extracted DNA, except for Alcanivorax, Thalassolituus, Cycloclasticus and Roseobacter spp., which were detected by both methods
    corecore