1,575 research outputs found
Vestibular schwannoma: role of conservative management
Objective: To assess the outcome of conservative management of vestibular schwannoma.Study design: Observational study. Setting: Tertiary referral centre.Patients: Four hundred and thirty-six patients with vestibular schwannoma (490 tumours), including 327 sporadic tumours and 163 tumours in 109 patients with neurofibromatosis type two.Main outcome measures: The relationship of tumour growth to tumour size at presentation, and to certain demographic features.Results: The initial tumour size was significantly larger in the neurofibromatosis type two group (11 mm) than in the sporadic vestibular schwannoma group (5.1 mm). In both groups, 68 per cent of tumours did not grow during follow up (mean 3.6 years; range one to 14 years). The mean growth rate was 1.1 mm/year (range 0-15 mm/year) for sporadic tumours and 1.7 mm/year (range 0-18 mm/year) for neurofibromatosis type two tumours. The tumour growth rate correlated positively with tumour size in the sporadic tumour group, and correlated negatively with age in the neurofibromatosis type two group.Conclusion: Two-thirds of vestibular schwannomas did not grow. Radiological surveillance is an acceptable approach in carefully selected patients. Once a sporadic vestibular schwannoma reaches 2 cm in intracranial diameter, it is likely to continue growing. We do not recommend conservative management for sporadic tumours with an intracranial diameter of 1.5 cm or more. Vestibular schwannoma management is more complex in patients with neurofibromatosis type two
Human origins in Southern African palaeo-wetlands? Strong claims from weak evidence
Attempts to identify a ‘homeland’ for our species from genetic data are widespread in the academic literature. However, even when putting aside the question of whether a ‘homeland’ is a useful concept, there are a number of inferential pitfalls in attempting to identify the geographic origin of a species from contemporary patterns of genetic variation. These include making strong claims from weakly informative data, treating genetic lineages as representative of populations, assuming a high degree of regional population continuity over hundreds of thousands of years, and using circumstantial observations as corroborating evidence without considering alternative hypotheses on an equal footing, or formally evaluating any hypothesis. In this commentary we review the recent publication that claims to pinpoint the origins of ‘modern humans’ to a very specific region in Africa (Chan et al., 2019), demonstrate how it fell into these inferential pitfalls, and discuss how this can be avoided
Networked buffering: a basic mechanism for distributed robustness in complex adaptive systems
A generic mechanism - networked buffering - is proposed for the generation of robust traits in complex systems. It requires two basic conditions to be satisfied: 1) agents are versatile enough to perform more than one single functional role within a system and 2) agents are degenerate, i.e. there exists partial overlap in the functional capabilities of agents. Given these prerequisites, degenerate systems can readily produce a distributed systemic response to local perturbations. Reciprocally, excess resources related to a single function can indirectly support multiple unrelated functions within a degenerate system. In models of genome:proteome mappings for which localized decision-making and modularity of genetic functions are assumed, we verify that such distributed compensatory effects cause enhanced robustness of system traits. The conditions needed for networked buffering to occur are neither demanding nor rare, supporting the conjecture that degeneracy may fundamentally underpin distributed robustness within several biotic and abiotic systems. For instance, networked buffering offers new insights into systems engineering and planning activities that occur under high uncertainty. It may also help explain recent developments in understanding the origins of resilience within complex ecosystems. \ud
\u
A fresh look at the evolution and diversification of photochemical reaction centers
In this review, I reexamine the origin and diversification of photochemical reaction centers based on the known phylogenetic relations of the core subunits, and with the aid of sequence and structural alignments. I show, for example, that the protein folds at the C-terminus of the D1 and D2 subunits of Photosystem II, which are essential for the coordination of the water-oxidizing complex, were already in place in the most ancestral Type II reaction center subunit. I then evaluate the evolution of reaction centers in the context of the rise and expansion of the different groups of bacteria based on recent large-scale phylogenetic analyses. I find that the Heliobacteriaceae family of Firmicutes appears to be the earliest branching of the known groups of phototrophic bacteria; however, the origin of photochemical reaction centers and chlorophyll synthesis cannot be placed in this group. Moreover, it becomes evident that the Acidobacteria and the Proteobacteria shared a more recent common phototrophic ancestor, and this is also likely for the Chloroflexi and the Cyanobacteria. Finally, I argue that the discrepancies among the phylogenies of the reaction center proteins, chlorophyll synthesis enzymes, and the species tree of bacteria are best explained if both types of photochemical reaction centers evolved before the diversification of the known phyla of phototrophic bacteria. The primordial phototrophic ancestor must have had both Type I and Type II reaction centers
A preliminary study of the effect of closed incision management with negative pressure wound therapy over high-risk incisions
Background
Certain postoperative wounds are recognised to be associated with more complications than others and may be termed high-risk. Wound healing can be particularly challenging following high-energy trauma where wound necrosis and infection rates are high. Surgical incision for joint arthrodesis can also be considered high-risk as it requires extensive and invasive surgery and postoperative distal limb swelling and wound dehiscence are common. Recent human literature has investigated the use of negative pressure wound therapy (NPWT) over high-risk closed surgical incisions and beneficial effects have been noted including decreased drainage, decreased dehiscence and decreased infection rates. In a randomised, controlled study twenty cases undergoing distal limb high-energy fracture stabilisation or arthrodesis were randomised to NPWT or control groups. All cases had a modified Robert-Jones dressing applied for 72 h postoperatively and NPWT was applied for 24 h in the NPWT group. Morphometric assessment of limb circumference was performed at six sites preoperatively, 24 and 72 h postoperatively. Wound discharge was assessed at 24 and 72 h. Postoperative analgesia protocol was standardised and a Glasgow Composite Measure Pain Score (GCPS) carried out at 24, 48 and 72 h. Complications were noted and differences between groups were assessed.
Results
Percentage change in limb circumference between preoperative and 24 and 72 h postoperative measurements was significantly less at all sites for the NPWT group with exception of the joint proximal to the surgical site and the centre of the operated bone at 72 h. Median discharge score was lower in the NPWT group than the control group at 24 h. No significant differences in GCPS or complication rates were noted.
Conclusions
Digital swelling and wound discharge were reduced when NPWT was employed for closed incision management. Larger studies are required to evaluate whether this will result in reduced discomfort and complication rates postoperatively
International Veterinary Epilepsy Task Force Consensus Proposal: Outcome of therapeutic interventions in canine and feline epilepsy
Common criteria for the diagnosis of drug resistance and the assessment of outcome are needed urgently as a prerequisite for standardized evaluation and reporting of individual therapeutic responses in canine epilepsy. Thus, we provide a proposal for the definition of drug resistance and partial therapeutic success in canine patients with epilepsy. This consensus statement also suggests a list of factors and aspects of outcome, which should be considered in addition to the impact on seizures. Moreover, these expert recommendations discuss criteria which determine the validity and informative value of a therapeutic trial in an individual patient and also suggest the application of individual outcome criteria. Agreement on common guidelines does not only render a basis for future optimization of individual patient management, but is also a presupposition for the design and implementation of clinical studies with highly standardized inclusion and exclusion criteria. Respective standardization will improve the comparability of findings from different studies and renders an improved basis for multicenter studies. Therefore, this proposal provides an in-depth discussion of the implications of outcome criteria for clinical studies. In particular ethical aspects and the different options for study design and application of individual patient-centered outcome criteria are considered
Massive stars as thermonuclear reactors and their explosions following core collapse
Nuclear reactions transform atomic nuclei inside stars. This is the process
of stellar nucleosynthesis. The basic concepts of determining nuclear reaction
rates inside stars are reviewed. How stars manage to burn their fuel so slowly
most of the time are also considered. Stellar thermonuclear reactions involving
protons in hydrostatic burning are discussed first. Then I discuss triple alpha
reactions in the helium burning stage. Carbon and oxygen survive in red giant
stars because of the nuclear structure of oxygen and neon. Further nuclear
burning of carbon, neon, oxygen and silicon in quiescent conditions are
discussed next. In the subsequent core-collapse phase, neutronization due to
electron capture from the top of the Fermi sea in a degenerate core takes
place. The expected signal of neutrinos from a nearby supernova is calculated.
The supernova often explodes inside a dense circumstellar medium, which is
established due to the progenitor star losing its outermost envelope in a
stellar wind or mass transfer in a binary system. The nature of the
circumstellar medium and the ejecta of the supernova and their dynamics are
revealed by observations in the optical, IR, radio, and X-ray bands, and I
discuss some of these observations and their interpretations.Comment: To be published in " Principles and Perspectives in Cosmochemistry"
Lecture Notes on Kodai School on Synthesis of Elements in Stars; ed. by Aruna
Goswami & Eswar Reddy, Springer Verlag, 2009. Contains 21 figure
Experimental Rugged Fitness Landscape in Protein Sequence Space
The fitness landscape in sequence space determines the process of biomolecular evolution. To plot the fitness landscape of protein function, we carried out in vitro molecular evolution beginning with a defective fd phage carrying a random polypeptide of 139 amino acids in place of the g3p minor coat protein D2 domain, which is essential for phage infection. After 20 cycles of random substitution at sites 12–130 of the initial random polypeptide and selection for infectivity, the selected phage showed a 1.7×10(4)-fold increase in infectivity, defined as the number of infected cells per ml of phage suspension. Fitness was defined as the logarithm of infectivity, and we analyzed (1) the dependence of stationary fitness on library size, which increased gradually, and (2) the time course of changes in fitness in transitional phases, based on an original theory regarding the evolutionary dynamics in Kauffman's n-k fitness landscape model. In the landscape model, single mutations at single sites among n sites affect the contribution of k other sites to fitness. Based on the results of these analyses, k was estimated to be 18–24. According to the estimated parameters, the landscape was plotted as a smooth surface up to a relative fitness of 0.4 of the global peak, whereas the landscape had a highly rugged surface with many local peaks above this relative fitness value. Based on the landscapes of these two different surfaces, it appears possible for adaptive walks with only random substitutions to climb with relative ease up to the middle region of the fitness landscape from any primordial or random sequence, whereas an enormous range of sequence diversity is required to climb further up the rugged surface above the middle region
- …