11 research outputs found

    Overexpression of Yeast Hsp110 Homolog Sse1p Suppresses ydj1-151 Thermosensitivity and Restores Hsp90-dependent Activity

    No full text
    The Saccharomyces cerevisiae heat-shock protein (Hsp)40, Ydj1p, is involved in a variety of cellular activities that control polypeptide fate, such as folding and translocation across intracellular membranes. To elucidate the mechanism of Ydj1p action, and to identify functional partners, we screened for multicopy suppressors of the temperature-sensitive ydj1-151 mutant and identified a yeast Hsp110, SSE1. Overexpression of Sse1p also suppressed the folding defect of v-Src kinase in the ydj1-151 mutant and partially reversed the α-factor translocation defect. SSE1-dependent suppression of ydj1-151 thermosensitivity required the wild-type ATP-binding domain of Sse1p. However, the Sse1p mutants maintained heat-denatured firefly luciferase in a folding-competent state in vitro and restored human androgen receptor folding in sse1 mutant cells. Because the folding of both v-Src kinase and human androgen receptor in yeast requires the Hsp90 complex, these data suggest that Ydj1p and Sse1p are interacting cochaperones in the Hsp90 complex and facilitate Hsp90-dependent activity

    Organizational Diversity among Distinct Glycoprotein Endoplasmic Reticulum-associated Degradation Programs

    No full text
    Protein folding and quality control in the early secretory pathway function as posttranslational checkpoints in eukaryote gene expression. Herein, an aberrant form of the hepatic secretory protein α1-antitrypsin was stably expressed in a human embryonic kidney cell line to elucidate the mechanisms by which glycoprotein endoplasmic reticulum-associated degradation (GERAD) is administered in cells from higher eukaryotes. After biosynthesis, genetic variant PI Z underwent alternative phases of secretion and degradation, the latter of which was mediated by the proteasome. Degradation required release from calnexin- and asparagine-linked oligosaccharide modification by endoplasmic reticulum mannosidase I, the latter of which occurred as PI Z was bound to the molecular chaperone grp78/BiP. That a distinct GERAD program operates in human embryonic kidney cells was supported by the extent of PI Z secretion, apparent lack of polymerization, inability of calnexin to participate in the degradation process, and sequestration of the glycoprotein folding sensor UDP-glucose:glycoprotein glucosyltransferase in the Golgi complex. Because UDP-glucose:glycoprotein glucosyltransferase sustains calnexin binding, its altered distribution is consistent with a GERAD program that hinders the reentry of substrates into the calnexin cycle, allowing grp78/BiP to partner with a lectin, other than calnexin, in the recognition of a two-component GERAD signal to facilitate substrate recruitment. How the processing of a mutant protein, rather than the mutation itself, can contribute to disease pathogenesis, is discussed

    Recognition and Delivery of ERAD Substrates to the Proteasome and Alternative Paths for Cell Survival

    No full text
    corecore