912 research outputs found
Placing regenerators in optical networks to satisfy multiple sets of requests.
The placement of regenerators in optical networks has become an active area of research during the last years. Given a set of lightpaths in a network G and a positive integer d, regenerators must be placed in such a way that in any lightpath there are no more than d hops without meeting a regenerator. While most of the research has focused on heuristics and simulations, the first theoretical study of the problem has been recently provided in [10], where the considered cost function is the number of locations in the network hosting regenerators. Nevertheless, in many situations a more accurate estimation of the real cost of the network is given by the total number of regenerators placed at the nodes, and this is the cost function we consider. Furthermore, in our model we assume that we are given a finite set of p possible traffic patterns (each given by a set of lightpaths), and our objective is to place the minimum number of regenerators at the nodes so that each of the traffic patterns is satisfied. While this problem can be easily solved when d = 1 or p = 1, we prove that for any fixed d,p ≥ 2 it does not admit a PTASUnknown control sequence '\textsc', even if G has maximum degree at most 3 and the lightpaths have length O(d)(d). We complement this hardness result with a constant-factor approximation algorithm with ratio ln (d ·p). We then study the case where G is a path, proving that the problem is NP-hard for any d,p ≥ 2, even if there are two edges of the path such that any lightpath uses at least one of them. Interestingly, we show that the problem is polynomial-time solvable in paths when all the lightpaths share the first edge of the path, as well as when the number of lightpaths sharing an edge is bounded. Finally, we generalize our model in two natural directions, which allows us to capture the model of [10] as a particular case, and we settle some questions that were left open in [10]
Initial data for a head on collision of two Kerr-like black holes with close limit
We prove the existence of a family of initial data for the Einstein vacuum
equation which can be interpreted as the data for two Kerr-like black holes in
arbitrary location and with spin in arbitrary direction. This family of initial
data has the following properties: (i) When the mass parameter of one of them
is zero or when the distance between them goes to infinity, it reduces exactly
to the Kerr initial data. (ii) When the distance between them is zero, we
obtain exactly a Kerr initial data with mass and angular momentum equal to the
sum of the mass and angular momentum parameters of each of them. The initial
data depends smoothly on the distance, the mass and the angular momentum
parameters.Comment: 15 pages, no figures, Latex2
Preasymptotic nature of hadron scattering vs small-x HERA Data
We emphasize that recently observed regularities in hadron interactions and
deep-inelastic scattering are of preasymptotic nature and it is impossible to
make conclusions on the true asymptotic behavior of observables without
unitarization procedure. Unitarization is important and changes scattering
picture drastically.Comment: LaTeX file, 9 pages; 4 tarred, gzipped and uuencoded figures in a
separate fil
Black Hole Interaction Energy
The interaction energy between two black holes at large separation distance
is calculated. The first term in the expansion corresponds to the Newtonian
interaction between the masses. The second term corresponds to the spin-spin
interaction. The calculation is based on the interaction energy defined on the
two black holes initial data. No test particle approximation is used. The
relation between this formula and cosmic censorship is discussed.Comment: 18 pages, 2 figures, LaTeX2
Area Invariance of Apparent Horizons under Arbitrary Boosts
It is a well known analytic result in general relativity that the
2-dimensional area of the apparent horizon of a black hole remains invariant
regardless of the motion of the observer, and in fact is independent of the slice, which can be quite arbitrary in general relativity.
Nonetheless the explicit computation of horizon area is often substantially
more difficult in some frames (complicated by the coordinate form of the
metric), than in other frames. Here we give an explicit demonstration for very
restricted metric forms of (Schwarzschild and Kerr) vacuum black holes. In the
Kerr-Schild coordinate expression for these spacetimes they have an explicit
Lorentz-invariant form. We consider {\it boosted} versions with the black hole
moving through the coordinate system. Since these are stationary black hole
spacetimes, the apparent horizons are two dimensional cross sections of their
event horizons, so we compute the areas of apparent horizons in the boosted
space with (boosted) , and obtain the same result as in the
unboosted case. Note that while the invariance of area is generic, we deal only
with black holes in the Kerr-Schild form, and consider only one particularly
simple change of slicing which amounts to a boost. Even with these restrictions
we find that the results illuminate the physics of the horizon as a null
surface and provide a useful pedagogical tool. As far as we can determine, this
is the first explicit calculation of this type demonstrating the area
invariance of horizons. Further, these calculations are directly relevant to
transformations that arise in computational representation of moving black
holes. We present an application of this result to initial data for boosted
black holes.Comment: 19 pages, 3 figures. Added a new section and 2 plots along with a
coautho
Comprehensive Solution to the Cosmological Constant, Zero-Point Energy, and Quantum Gravity Problems
We present a solution to the cosmological constant, the zero-point energy,
and the quantum gravity problems within a single comprehensive framework. We
show that in quantum theories of gravity in which the zero-point energy density
of the gravitational field is well-defined, the cosmological constant and
zero-point energy problems solve each other by mutual cancellation between the
cosmological constant and the matter and gravitational field zero-point energy
densities. Because of this cancellation, regulation of the matter field
zero-point energy density is not needed, and thus does not cause any trace
anomaly to arise. We exhibit our results in two theories of gravity that are
well-defined quantum-mechanically. Both of these theories are locally conformal
invariant, quantum Einstein gravity in two dimensions and Weyl-tensor-based
quantum conformal gravity in four dimensions (a fourth-order derivative quantum
theory of the type that Bender and Mannheim have recently shown to be
ghost-free and unitary). Central to our approach is the requirement that any
and all departures of the geometry from Minkowski are to be brought about by
quantum mechanics alone. Consequently, there have to be no fundamental
classical fields, and all mass scales have to be generated by dynamical
condensates. In such a situation the trace of the matter field energy-momentum
tensor is zero, a constraint that obliges its cosmological constant and
zero-point contributions to cancel each other identically, no matter how large
they might be. Quantization of the gravitational field is caused by its
coupling to quantized matter fields, with the gravitational field not needing
any independent quantization of its own. With there being no a priori classical
curvature, one does not have to make it compatible with quantization.Comment: Final version, to appear in General Relativity and Gravitation (the
final publication is available at http://www.springerlink.com). 58 pages,
revtex4, some additions to text and some added reference
Antigiardial activity of novel guanidine compounds
From four focused compound libraries based on the known anticoccidial agent robenidine, 44 compounds total were synthesised and screened for antigiardial activity. All active compounds were counter-screened for antibiotic and cytotoxic action. Of the analogues examined, 21 displayed IC50<5 μM, seven with IC50<1.0 μM. Most active were 2,2′-bis{[4-(trifluoromethoxy)phenyl]methylene}carbonimidic dihydrazide hydrochloride (30), 2,2′-bis{[4-(trifluoromethylsulfanyl)phenyl]methylene}carbonimidic dihydrazide hydrochloride (32), and 2,2′-bis[(2-bromo-4,5-dimethoxyphenyl)methylene]carbonimidic dihydrazide hydrochloride (41) with IC50=0.2 μM. The maximal observed activity was a 5 h IC50 value of 0.2 μM for 41. The clinically used metronidazole was inactive at this timepoint at a concentration of 25 μM. Robenidine off-target effects at bacteria and cell line toxicity were removed. Analogue 41 was well tolerated in mice treated orally (100 mg/kg). Following 5 h treatment with 41, no Giardia regrowth was noted after 48 h
Backward pion-nucleon scattering
A global analysis of the world data on differential cross sections and
polarization asymmetries of backward pion-nucleon scattering for invariant
collision energies above 3 GeV is performed in a Regge model. Including the
, , and trajectories, we
reproduce both angular distributions and polarization data for small values of
the Mandelstam variable , in contrast to previous analyses. The model
amplitude is used to obtain evidence for baryon resonances with mass below 3
GeV. Our analysis suggests a resonance with a mass of 2.83 GeV as
member of the trajectory from the corresponding Chew-Frautschi
plot.Comment: 12 pages, 16 figure
Time-symmetric initial data for binary black holes in numerical relativity
We look for physically realistic initial data in numerical relativity which
are in agreement with post-Newtonian approximations. We propose a particular
solution of the time-symmetric constraint equation, appropriate to two
momentarily static black holes, in the form of a conformal decomposition of the
spatial metric. This solution is isometric to the post-Newtonian metric up to
the 2PN order. It represents a non-linear deformation of the solution of Brill
and Lindquist, i.e. an asymptotically flat region is connected to two
asymptotically flat (in a certain weak sense) sheets, that are the images of
the two singularities through appropriate inversion transformations. The total
ADM mass M as well as the individual masses m_1 and m_2 (when they exist) are
computed by surface integrals performed at infinity. Using second order
perturbation theory on the Brill-Lindquist background, we prove that the
binary's interacting mass-energy M-m_1-m_2 is well-defined at the 2PN order and
in agreement with the known post-Newtonian result.Comment: 27 pages, to appear in Phys. Rev.
- …