11 research outputs found
First- principle calculations of magnetic interactions in correlated systems
We present a novel approach to calculate the effective exchange interaction
parameters based on the realistic electronic structure of correlated magnetic
crystals in local approach with the frequency dependent self energy. The analog
of ``local force theorem'' in the density functional theory is proven for
highly correlated systems. The expressions for effective exchange parameters,
Dzialoshinskii- Moriya interaction, and magnetic anisotropy are derived. The
first-principle calculations of magnetic excitation spectrum for ferromagnetic
iron, with the local correlation effects from the numerically exact QMC-scheme
is presented.Comment: 17 pages, 3 Postscript figure
On the self-consistent spin-wave theory of layered Heisenberg magnets
The versions of the self-consistent spin-wave theories (SSWT) of
two-dimensional (2D) Heisenberg ferro- and antiferromagnets with a weak
interlayer coupling and/or magnetic anisotropy, that are based on the
non-linear Dyson-Maleev, Schwinger, and combined boson-pseudofermion
representations, are analyzed. Analytical results for the temperature
dependences of (sublattice) magnetization and short-range order parameter, and
the critical points are obtained. The influence of external magnetic field is
considered. Fluctuation corrections to SSWT are calculated within a
random-phase approximation which takes into account correctly leading and
next-leading logarithmic singularities. These corrections are demonstrated to
improve radically the agreement with experimental data on layered perovskites
and other systems. Thus an account of these fluctuations provides a
quantitative theory of layered magnets.Comment: 46 pages, RevTeX, 7 figure
Modeling the actinides with disordered local moments
A first-principles disordered local moment (DLM) picture within the
local-spin-density and coherent potential approximations (LSDA+CPA) of the
actinides is presented. The parameter free theory gives an accurate description
of bond lengths and bulk modulus. The case of -Pu is studied in
particular and the calculated density of states is compared to data from
photo-electron spectroscopy. The relation between the DLM description, the
dynamical mean field approach and spin-polarized magnetically ordered modeling
is discussed.Comment: 6 pages, 4 figure
Theory of Coexistence of Superconductivity and Ferroelectricity : A Dynamical Symmetry Model
We propose and investigate a model for the coexistence of Superconductivity
(SC) and Ferroelectricity (FE) based on the dynamical symmetries for
the pseudo-spin SC sector, for the displaced oscillator FE sector, and
for the composite system. We assume a minimal
symmetry-allowed coupling, and simplify the hamiltonian using a double mean
field approximation (DMFA). A variational coherent state (VCS) trial
wave-function is used for the ground state: the energy, and the relevant order
parameters for SC and FE are obtained. For positive sign of the SC-FE coupling
coefficient, a non-zero value of either order parameter can suppress the other
(FE polarization suppresses SC and vice versa). This gives some support to
"Matthias' Conjecture" [1964], that SC and FE tend to be mutually exclusive.
For such a Ferroelectric Superconductor we predict: a) the SC gap
(and ) will increase with increasing applied pressure when pressure
quenches FE as in many ferroelectrics, and b) the FE polarization will increase
with increaesing magnetic field up to . The last result is equivalent to
the prediction of a new type of Magneto-Electric Effect in a coexistent SC-FE
material. Some discussion will be given of the relation of these results to the
cuprate superconductors.Comment: 46 page