18 research outputs found

    'Theory for the enhanced induced magnetization in coupled magnetic trilayers in the presence of spin fluctuations'

    Full text link
    Motivated by recent experiments, the effect of the interlayer exchange interaction JinterJ_{inter} on the magnetic properties of coupled Co/Cu/Ni trilayers is studied theoretically. Here the Ni film has a lower Curie temperature TC,NiT_{C,\rm Ni} than the Co film in case of decoupled layers. We show that by taking into account magnetic fluctuations the interlayer coupling induces a strong magnetization for T\gtsim T_{C,\rm Ni} in the Ni film. For an increasing JinterJ_{inter} the resonance-like peak of the longitudinal Ni susceptibility is shifted to larger temperatures, whereas its maximum value decreases strongly. A decreasing Ni film thickness enhances the induced Ni magnetization for T\gtsim T_{C,\rm Ni}. The measurements cannot be explained properly by a mean field estimate, which yields a ten times smaller effect. Thus, the observed magnetic properties indicate the strong effect of 2D magnetic fluctuations in these layered magnetic systems. The calculations are performed with the help of a Heisenberg Hamiltonian and a Green's function approach.Comment: 4 pages, 3 figure

    The spectral theorem of many-body Green's function theory when there are zero eigenvalues of the matrix governing the equations of motion

    Full text link
    In using the spectral theorem of many-body Green's function theory in order to relate correlations to commutator Green's functions, it is necessary in the standard procedure to consider the anti-commutator Green's functions as well whenever the matrix governing the equations of motion for the commutator Green's functions has zero eigenvalues. We show that a singular-value decomposition of this matrix allows one to reformulate the problem in terms of a smaller set of Green's functions with an associated matrix having no zero eigenvalues, thus eliminating the need for the anti-commutator Green's functions. The procedure is quite general and easy to apply. It is illustrated for the field-induced reorientation of the magnetization of a ferromagnetic Heisenberg monolayer and it is expected to work for more complicated cases as well.Comment: 4 pages, 1 figure, accepted for publication in Physical Review B (16. May 2003

    In-plane dipole coupling anisotropy of a square ferromagnetic Heisenberg monolayer

    Full text link
    In this study we calculate the dipole-coupling-induced quartic in-plane anisotropy of a square ferromagnetic Heisenberg monolayer. This anisotropy increases with an increasing temperature, reaching its maximum value close to the Curie temperature of the system. At T=0 the system is isotropic, besides a small remaining anisotropy due to the zero-point motion of quantum mechanical spins. The reason for the dipole-coupling-induced anisotropy is the disturbance of the square spin lattice due to thermal fluctuations ('order-by-disorder' effect). For usual ferromagnets its strength is small as compared to other anisotropic contributions, and decreases by application of an external magnetic field. The results are obtained from a Heisenberg Hamiltonian by application of a mean field approach for a spin cluster, as well as from a many-body Green's function theory within the Tyablikov-decoupling (RPA).Comment: 6 pages, 2 figures, accepted for publication in RP

    Effects of spin-elastic interactions in frustrated Heisenberg antiferromagnets

    Full text link
    The Heisenberg antiferromagnet on a compressible triangular lattice in the spin- wave approximation is considered. It is shown that the interaction between quantum fluctuations and elastic degrees of freedom stabilizes the low symmetric L-phase with a collinear Neel magnetic ordering. Multi-stability in the dependence of the on-site magnetization on an unaxial pressure is found.Comment: Revtex, 4 pages, 2 eps figure

    Comparison of superconductivity in Sr_2RuO_4 and copper oxides

    Full text link
    To compare the superconductivity in strongly correlated electron systems with the antiferromagnetic fluctuations in the copper oxides and with the ferromagnetic fluctuations in Sr_2RuO_4 a t-J-I model is proposed. The antiferromagnetic coupling J results in the superconducting state of d_{x^2-y^2} symmetry and the ferromagnetic coupling constant I results in the spin-triplet p-type state. The difference in the gap anisotropies provides the large difference in T_c values, for the typical values of the coupling constants: T_c of order of 1K for the ruthenate and T_c of order of 100K for the cuprates.Comment: 4 pages, RevTEX, 3 figs. Submitted to Phys. Rev. Let

    Schwinger boson theory of anisotropic ferromagnetic ultrathin films

    Full text link
    Ferromagnetic thin films with magnetic single-ion anisotropies are studied within the framework of Schwinger bosonization of a quantum Heisenberg model. Two alternative bosonizations are discussed. We show that qualitatively correct results are obtained even at the mean-field level of the theory, similar to Schwinger boson results for other magnetic systems. In particular, the Mermin-Wagner theorem is satisfied: a spontaneous magnetization at finite temperatures is not found if the ground state of the anisotropic system exhibits a continuous degeneracy. We calculate the magnetization and effective anisotropies as functions of exchange interaction, magnetic anisotropies, external magnetic field, and temperature for arbitrary values of the spin quantum number. Magnetic reorientation transitions and effective anisotropies are discussed. The results obtained by Schwinger boson mean-field theory are compared with the many-body Green's function technique.Comment: 14 pages, including 7 EPS figures, minor changes, final version as publishe

    On the self-consistent spin-wave theory of layered Heisenberg magnets

    Full text link
    The versions of the self-consistent spin-wave theories (SSWT) of two-dimensional (2D) Heisenberg ferro- and antiferromagnets with a weak interlayer coupling and/or magnetic anisotropy, that are based on the non-linear Dyson-Maleev, Schwinger, and combined boson-pseudofermion representations, are analyzed. Analytical results for the temperature dependences of (sublattice) magnetization and short-range order parameter, and the critical points are obtained. The influence of external magnetic field is considered. Fluctuation corrections to SSWT are calculated within a random-phase approximation which takes into account correctly leading and next-leading logarithmic singularities. These corrections are demonstrated to improve radically the agreement with experimental data on layered perovskites and other systems. Thus an account of these fluctuations provides a quantitative theory of layered magnets.Comment: 46 pages, RevTeX, 7 figure

    QUANTIZED INTRINSICALLY LOCALIZED MODES: LOCALIZATION THROUGH INTERACTION

    No full text

    Phase Transitions in Uniaxial Antiferromagnets

    No full text
    corecore