6 research outputs found
Dynamical X-Ray Diffraction Characterization of the Self-Organized Quantum Dot Formation In Imperfect Semiconductor Superlattices
The self-organized quantum dot (QD) formation in InGaAs/GaAs superlattices grown by molecular beam epitaxy was investigated by the high-resolution X-ray diffraction technique. The investigated samples had the identical structure consisting of fifteen periods of {InxGa1−xAs (8 ML)/GaAs (26 ML)} with the nominal In concentration x = 0.2. The diffraction profiles and reciprocal lattice maps for these samples have been measured at symmetrical (004) reflection by using the triple-crystal X-ray diffractometer. The analysis of the measured data was performed by using the proposed diffraction model based on the statistical theory of dynamical X-ray scattering in imperfect single crystals and multilayer structures
Double- and triple-crystal X-ray diffractometry of microdefects in silicon
The generalized dynamical theory of X-ray scattering by real single crystals
allows to self-consistently describe intensities of coherent and diffuse scattering
measured by double- and triple-crystal diffractometers (DCD and TCD) from single
crystals with defects in crystal bulk and with strained subsurface layers. Being based on
this theory, we offer the combined DCD+TCD method that exhibits the higher sensitivity
to defect structures with wide size distributions as compared with any of these methods
alone. In the investigated Czochralski-grown silicon crystals, the sizes and concentrations
of small oxygen precipitates as well as small and large dislocation loops have been
determined using this method
Quantum-Mechanical Model of Interconsistent Amplitude and Dispersion Influences of Structure Imperfections on the Multiple Scattering Pattern for Mapping and Characterization of Strains and Defects in Ion-Implanted Garnet Films
Numerical simulation of the reciprocal-space maps for ion-implanted single-crystal yttrium—iron garnet films on gadolinium—gallium garnet substrates is carried out and based on the theoretical model of the triple-axes dynamical diffractometry of multilayer crystalline systems with inhomogeneous strain distributions and randomly distributed defects. In this model, the amplitude and dispersion mechanisms of influence of the structure imperfections on diffraction or refraction, absorption and extinction of radiation, respectively, for the coherent and diffuse scattering intensities are interconsistently taken into account for all the layers of the system, using derived recurrent relations between the coherent-scattering amplitudes. The presence of growth defects in both the film and the substrate as well as radiation defects created in subsurface layer of nanometre-scale thickness after 90 keV F⁺ ion implantation are taken into account in the proposed model of the multilayer systems. Using this model, the rocking curves measured from as-grown and ion-implanted samples are also treated for determination of realistic strain-profile parameters and structural-defect characteristics in both implanted films and substrates with the aim of numerical reconstruction of the diffraction patterns from multilayer imperfect single-crystal systems.Чисельне моделювання карт оберненого простору для йонно-імплантованих монокристалічних залізо-ітрійових плівок ферит-ґранатів на підложжях з ґадоліній-ґалійового ґранату здійснено на основі теоретичного моделю тривісної динамічної дифрактометрії для багатошарових кристалічних систем із неоднорідними розподілами деформації та випадково розподіленими дефектами. В цьому моделі амплітудний і дисперсійний механізми впливу недосконалостей структури відповідно на дифракцію чи на заломлення, поглинання й екстинкцію випромінення в інтенсивності когерентного та дифузного розсіяння взаємоузгоджено враховувалися для всіх шарів системи за допомогою одержаних рекурентних співвідношень між амплітудами когерентного розсіяння. В запропонованому моделі багатошарових систем враховано наявність ростових дефектів, як у плівці, так і в підложжі, а також радіяційних дефектів у приповерхневому шарі нанометрової товщини, утворених після імплантації йонів F⁺ з енергією у 90 кеВ. З використанням зазначеного моделю також оброблялися криві хитання вихідного та йонно-імплантованого зразків для визначення реалістичних параметрів профілів деформації та структурних характеристик дефектів у підложжях та імплантованих плівках з метою чисельної реконструкції картин динамічної дифракції від монокристалічних багатошарових зразків.Численное моделирование карт обратного пространства для ионно-имплантированных монокристаллических железо-иттриевых плёнок феррит-гранатов на подложках из гадолиний-галлиевого граната осуществлено на основе теоретической модели трёхосной динамической дифрактометрии для многослойных кристаллических систем с неоднородными распределениями деформации и случайно распределёнными дефектами. В этой модели амплитудный и дисперсионный механизмы влияния несовершенств структуры соответственно на дифракцию или на преломление, поглощение и экстинкцию излучений в интенсивности когерентного и диффузного рассеяния взаимосогласованно учитывались для всех слоёв системы с помощью полученных рекуррентных соотношений между амплитудами когерентного рассеяния. В предлагаемой модели многослойных систем учтено наличие ростовых дефектов, как в плёнке, так и в подложке, а также радиационных дефектов в приповерхностном слое нанометровой толщины, образованных после имплантации ионов F⁺ с энергией 90 кэВ. С использованием упомянутой модели также обрабатывались кривые качания исходного и ионно-имплантированного образцов для реалистичного определения параметров профилей деформации и структурных характеристик дефектов в подложках и имплантированных плёнках с целью численной реконструкции картин динамической дифракции от монокристаллических многослойных образцов