569 research outputs found
On String Theory Duals of Lifshitz-like Fixed Points
We present type IIB supergravity solutions which are expected to be dual to
certain Lifshitz-like fixed points with anisotropic scale invariance. They are
expected to describe a class of D3-D7 systems and their finite temperature
generalizations are straightforward. We show that there exist solutions that
interpolate between these anisotropic solutions in the IR and the standard AdS5
solutions in the UV. This predicts anisotropic RG flows from familiar isotropic
fixed points to anisotropic ones. In our case, these RG flows are triggered by
a non-zero theta-angle in Yang-Mills theories that linearly depends on one of
the spatial coordinates. We study the perturbations around these backgrounds
and discuss the possibility of instability. We also holographically compute
their thermal entropies, viscosities, and entanglement entropies.Comment: 47 pages, 4 figure
Single-filament Composite MgB2/SUS Ribbons by Powder-In-Tube Process
We report the successful fabrication of single-filament composite MgB2/SUS
ribbons, as an ultra-robust conductor type, employing the powder-in-tube (PIT)
process, by swaging and cold rolling only. The remarkable transport critical
current (Ic) of the non-sintered MgB2/SUS ribbon has observed, as an unexpected
result. Transport critical currents Ic ~ 316 A at T = 4.2 K and Ic ~ 82 A at T
= 20 K were observed at self-field, for the non-sintered composite MgB2/SUS
ribbon. In addition, the persistent current density Jp values, that were
estimated by Bean formula, were more than ~ 7  105 A/cm2 at T = 5 K,
and ~ 1.2  105 A/cm2 at T = 30 K, for the sintered composite MgB2/SUS
ribbon, at H = 0 G.Comment: 10 pages, 4 figure
Critical depinning force and vortex lattice order in disordered superconductors
We simulate the ordering of vortices and its effects on the critical current
in superconductors with varied vortex-vortex interaction strength and varied
pinning strengths for a two-dimensional system. For strong pinning the vortex
lattice is always disordered and the critical depinning force only weakly
increases with decreasing vortex-vortex interactions. For weak pinning the
vortex lattice is defect free until the vortex-vortex interactions have been
reduced to a low value, when defects begin to appear with a simultaneous rapid
increase in the critical depinning force. In each case the depinning force
shows a maximum for non-interacting vortices. The relative height of the peak
increases and the peak width decreases for decreasing pinning strength in
excellent agreement with experimental trends associated with the peak effect.
We show that scaling relations exist between the distance between defects in
the vortex lattice and the critical depinning force.Comment: 5 pages, 6 figure
A note on the extensivity of the holographic entanglement entropy
We consider situations where the renormalized geometric entropy, as defined
by the AdS/CFT ansatz of Ryu and Takayanagi, shows extensive behavior in the
volume of the entangled region. In general, any holographic geometry that is
`capped' in the infrared region is a candidate for extensivity provided the
growth of minimal surfaces saturates at the capping region, and the induced
metric at the `cap' is non-degenerate. Extensivity is well-known to occur for
highly thermalized states. In this note, we show that the holographic ansatz
predicts the persistence of the extensivity down to vanishing temperature, for
the particular case of conformal field theories in 2+1 dimensions with a
magnetic field and/or electric charge condensates.Comment: 12 pages and 2 figures; one reference added; Significant additions to
section 3, involving new results and a more pedagogical presentatio
A family of super Schrodinger invariant Chern-Simons matter systems
We investigate non-relativistic limits of the N=3 Chern-Simons matter system
in 1+2 dimensions. The relativistic theory can generate several inequivalent
super Schodinger invariant theories, depending on the degrees of freedom we
choose to retain in the non-relativistic limit. The maximally supersymmetric
Schrodinger invariant theory is obtained by keeping all particle degrees of
freedom. The other descendants, where particles and anti-particles coexist, are
also Schrodinger invariant but preserve less supersymmetries. Thus, we have a
family of super Schrodinger invariant field theories produced from the parent
relativistic theory.Comment: 1+35 pages, references added and typos fixe
Metastability and Transient Effects in Vortex Matter Near a Decoupling Transition
We examine metastable and transient effects both above and below the
first-order decoupling line in a 3D simulation of magnetically interacting
pancake vortices. We observe pronounced transient and history effects as well
as supercooling and superheating between the 3D coupled, ordered and 2D
decoupled, disordered phases. In the disordered supercooled state as a function
of DC driving, reordering occurs through the formation of growing moving
channels of the ordered phase. No channels form in the superheated region;
instead the ordered state is homogeneously destroyed. When a sequence of
current pulses is applied we observe memory effects. We find a ramp rate
dependence of the V(I) curves on both sides of the decoupling transition. The
critical current that we obtain depends on how the system is prepared.Comment: 10 pages, 15 postscript figures, version to appear in PR
Effects of columnar disorder on flux-lattice melting in high-temperature superconductors
The effect of columnar pins on the flux-lines melting transition in
high-temperature superconductors is studied using Path Integral Monte Carlo
simulations. We highlight the similarities and differences in the effects of
columnar disorder on the melting transition in YBaCuO
(YBCO) and the highly anisotropic BiSrCaCuO (BSCCO) at
magnetic fields such that the mean separation between flux-lines is smaller
than the penetration length. For pure systems, a first order transition from a
flux-line solid to a liquid phase is seen as the temperature is increased. When
adding columnar defects to the system, the transition temperature is not
affected in both materials as long as the strength of an individual columnar
defect (expressed as a flux-line defect interaction) is less than a certain
threshold for a given density of randomly distributed columnar pins. This
threshold strength is lower for YBCO than for BSCCO. For higher strengths the
transition line is shifted for both materials towards higher temperatures, and
the sharp jump in energy, characteristic of a first order transition, gives way
to a smoother and gradual rise of the energy, characteristic of a second order
transition. Also, when columnar defects are present, the vortex solid phase is
replaced by a pinned Bose glass phase and this is manifested by a marked
decrease in translational order and orientational order as measured by the
appropriate structure factors. For BSCCO, we report an unusual rise of the
translational order and the hexatic order just before the melting transition.
No such rise is observed in YBCO.Comment: 32 pages, 13 figures, revte
Event Reconstruction in the PHENIX Central Arm Spectrometers
The central arm spectrometers for the PHENIX experiment at the Relativistic
Heavy Ion Collider have been designed for the optimization of particle
identification in relativistic heavy ion collisions. The spectrometers present
a challenging environment for event reconstruction due to a very high track
multiplicity in a complicated, focusing, magnetic field. In order to meet this
challenge, nine distinct detector types are integrated for charged particle
tracking, momentum reconstruction, and particle identification. The techniques
which have been developed for the task of event reconstruction are described.Comment: Accepted for publication in Nucl. Instrum. A. 34 pages, 23 figure
Tensor network states and geometry
Tensor network states are used to approximate ground states of local
Hamiltonians on a lattice in D spatial dimensions. Different types of tensor
network states can be seen to generate different geometries. Matrix product
states (MPS) in D=1 dimensions, as well as projected entangled pair states
(PEPS) in D>1 dimensions, reproduce the D-dimensional physical geometry of the
lattice model; in contrast, the multi-scale entanglement renormalization ansatz
(MERA) generates a (D+1)-dimensional holographic geometry. Here we focus on
homogeneous tensor networks, where all the tensors in the network are copies of
the same tensor, and argue that certain structural properties of the resulting
many-body states are preconditioned by the geometry of the tensor network and
are therefore largely independent of the choice of variational parameters.
Indeed, the asymptotic decay of correlations in homogeneous MPS and MERA for
D=1 systems is seen to be determined by the structure of geodesics in the
physical and holographic geometries, respectively; whereas the asymptotic
scaling of entanglement entropy is seen to always obey a simple boundary law --
that is, again in the relevant geometry. This geometrical interpretation offers
a simple and unifying framework to understand the structural properties of, and
helps clarify the relation between, different tensor network states. In
addition, it has recently motivated the branching MERA, a generalization of the
MERA capable of reproducing violations of the entropic boundary law in D>1
dimensions.Comment: 18 pages, 18 figure
Hybrid Stars in a Strong Magnetic Field
We study the effects of high magnetic fields on the particle population and
equation of state of hybrid stars using an extended hadronic and quark SU(3)
non-linear realization of the sigma model. In this model the degrees of freedom
change naturally from hadrons to quarks as the density and/or temperature
increases. The effects of high magnetic fields and anomalous magnetic moment
are visible in the macroscopic properties of the star, such as mass, adiabatic
index, moment of inertia, and cooling curves. Moreover, at the same time that
the magnetic fields become high enough to modify those properties, they make
the star anisotropic.Comment: Revised version with updated reference
- …