15 research outputs found

    Withdrawal of maintenance therapy for cytomegalovirus retinitis in AIDS patients exhibiting immunological response to HAART

    Get PDF
    BACKGROUND: Before the introduction of highly active antiretroviral therapy (HAART), CMV retinitis was a common complication in patients with advanced HIV disease and the therapy was well established; it consisted of an induction phase to control the infection with ganciclovir, followed by a lifelong maintenance phase to avoid or delay relapses. METHODS: To determine the safety of CMV maintenance therapy withdrawal in patients with immune recovery after HAART, 35 patients with treated CMV retinitis, on maintenance therapy, with CD4+ cell count greater than 100 cells/mm³ for at least three months, but almost all patients presented these values for more than six months and viral load < 30000 copies/mL, were prospectively evaluated for the recurrence of CMV disease. Maintenance therapy was withdrawal at inclusion, and patients were monitored for at least 48 weeks by clinical and ophthalmologic evaluations, and by determination of CMV viremia markers (antigenemia-pp65), CD4+/CD8+ counts and plasma HIV RNA levels. Lymphoproliferative assays were performed on 26/35 patients. RESULTS: From 35 patients included, only one had confirmed reactivation of CMV retinitis, at day 120 of follow-up. No patient returned positive antigenemia tests. No correlation between lymphoproliferative assays and CD4+ counts was observed. CONCLUSION: CMV retinitis maintenance therapy discontinuation is safe for those patients with quantitative immune recovery after HAART

    Dexamethasone intravitreal implant in previously treated patients with diabetic macular edema : Subgroup analysis of the MEAD study

    Get PDF
    Background: Dexamethasone intravitreal implant 0.7 mg (DEX 0.7) was approved for treatment of diabetic macular edema (DME) after demonstration of its efficacy and safety in the MEAD registration trials. We performed subgroup analysis of MEAD study results to evaluate the efficacy and safety of DEX 0.7 treatment in patients with previously treated DME. Methods: Three-year, randomized, sham-controlled phase 3 study in patients with DME, best-corrected visual acuity (BCVA) of 34.68 Early Treatment Diabetic Retinopathy Study letters (20/200.20/50 Snellen equivalent), and central retinal thickness (CRT) 65300 \u3bcm measured by time-domain optical coherence tomography. Patients were randomized to 1 of 2 doses of DEX (0.7 mg or 0.35 mg), or to sham procedure, with retreatment no more than every 6 months. The primary endpoint was 6515-letter gain in BCVA at study end. Average change in BCVA and CRT from baseline during the study (area-under-the-curve approach) and adverse events were also evaluated. The present subgroup analysis evaluated outcomes in patients randomized to DEX 0.7 (marketed dose) or sham based on prior treatment for DME at study entry. Results: Baseline characteristics of previously treated DEX 0.7 (n = 247) and sham (n=261) patients were similar. In the previously treated subgroup, mean number of treatments over 3 years was 4.1 for DEX 0.7 and 3.2 for sham, 21.5 % of DEX 0.7 patients versus 11.1 % of sham had 6515-letter BCVA gain from baseline at study end (P = 0.002), mean average BCVA change from baseline was +3.2 letters with DEX 0.7 versus +1.5 letters with sham (P = 0.024), and mean average CRT change from baseline was -126.1 \u3bcm with DEX 0.7 versus -39.0 \u3bcm with sham(P < 0.001). Cataract-related adverse events were reported in 70.3 % of baseline phakic patients in the previously treated DEX 0.7 subgroup; vision gains were restored following cataract surgery. Conclusions: DEX 0.7 significantly improved visual and anatomic outcomes in patients with DME previously treated with laser, intravitreal anti-vascular endothelial growth factor, intravitreal triamcinolone acetonide, or a combination of these therapies. The safety profile of DEX 0.7 in previously treated patients was similar to its safety profile in the total study population

    Upregulation of vascular endothelial growth factor (VEGF) in the retinas of transgenic mice overexpressing interleukin-1ß (IL-1ß) in the lens and mice undergoing retinal degeneration

    No full text
    IL-1ß is a pro-inflammatory agent associated with angiogenesis and increased vascular permeability. To determine whether IL-1ß elicits these responses through an upregulation of VEGF, transgenic mice that overexpress IL-1ß in the lens were evaluated at various time points for the localization of VEGF, the location and extent of blood-retinal barrier (BRB) breakdown, and the origin and extent of neovascularization (NV). In homozygous and heterozygous transgenic mice, but not controls, intense VEGF immunoreactivity was scattered throughout the retina at postnatal days 5-7 (P5-7), just after the onset of inflammatory cell infiltration. VEGF staining in the retina remained widespread, but weak from P9-15. Beginning at P15, the intensity of VEGF immunoreactivity achieved a second peak, which it maintained through adulthood. This peak coincided with significant retinal destruction due to massive inflammation. The onset of BRB breakdown coincided with the upregulation of VEGF (P5-7) and widespread BRB breakdown was demonstrated from about P9. From P9-12, aggregates of cells positive for Griffonia simplicifolia isolectin-B4, a marker for vascular endothelial cells, formed on the retinal surface. These cells migrated into the retina at P12-15 with the more superficial cells forming a network of vessels and the deeper cells remaining in small clusters, thus demonstrating that NV occurs much later than BRB breakdown. Non-transgenic FVB/N mice, which undergo retinal degeneration beginning at about P9, also demonstrate the latter peak of VEGF upregulation and the accompanying BRB breakdown, but not the early upregulation. VEGF immunostaining of transgenic and non-transgenic mouse retinas was eliminated by preincubation of the VEGF antibodies with VEGF peptide. The data suggest that the early peak of VEGF upregulation (P5-7) and its accompanying BRB breakdown is due to IL-1ß expression and is likely to be dependent on inflammatory cell infiltration. The latter peak appears to be related to retinal destruction

    Chemotherapy in newly diagnosed primary central nervous system lymphoma

    No full text
    Primary central nervous system lymphoma (PCNSL) accounts for only 3% of brain tumors. It can involve the brain parenchyma, leptomeninges, eyes and the spinal cord. Unlike systemic lymphoma, durable remissions remain uncommon. Although phase III trials in this rare disease are difficult to perform, many phase II trials have attempted to define standards of care. Treatment modalities for patients with newly diagnosed PCNSL include radiation and/or chemotherapy. While the role of radiation therapy for initial management of PCNSL is controversial, clinical trials will attempt to improve the therapeutic index of this modality. Routes of chemotherapy administration include intravenous, intraocular, intraventricular or intra-arterial. Multiple trials have outlined different methotrexate-based chemotherapy regimens and have used local techniques to improve drug delivery. A major challenge in the management of patients with PCNSL remains the delivery of aggressive treatment with preservation of neurocognitive function. Because PCNSL is rare, it is important to perform multicenter clinical trials and to incorporate detailed measurements of long-term toxicities. In this review we focus on different chemotherapeutic approaches for immunocompetent patients with newly diagnosed PCNSL and discuss the role of local drug delivery in addition to systemic therapy. We also address the neurocognitive toxicity of treatment

    Dexamethasone intravitreal implant in patients with macular edema related to branch or central retinal vein occlusion twelve-month study results

    No full text
    OBJECTIVE: To evaluate the safety and efficacy of 1 or 2 treatments with dexamethasone intravitreal implant (DEX implant) over 12 months in eyes with macular edema owing to branch or central retinal vein occlusion (BRVO or CRVO). DESIGN: Two identical, multicenter, prospective studies included a randomized, 6-month, double-masked, sham-controlled phase followed by a 6-month open-label extension. PARTICIPANTS: We included 1256 patients with vision loss owing to macular edema associated with BRVO or CRVO. METHODS: At baseline, patients received DEX implant 0.7 mg (n = 421), DEX implant 0.35 mg (n = 412), or sham (n = 423) in the study eye. At day 180, patients could receive DEX implant 0.7 mg if best-corrected visual acuity (BCVA) was 250 \u3bcm. MAIN OUTCOME MEASURES: The primary outcome for the open-label extension was safety; BCVA was also evaluated. RESULTS: At day 180, 997 patients received open-label DEX implant. Except for cataract, the incidence of ocular adverse events was similar in patients who received their first or second DEX implant. Over 12 months, cataract progression occurred in 90 of 302 phakic eyes (29.8%) that received 2 DEX implant 0.7 mg injections versus 5 of 88 sham-treated phakic eyes (5.7%); cataract surgery was performed in 4 of 302 (1.3%) and 1 of 88 (1.1%) eyes, respectively. In the group receiving two 0.7-mg DEX implants (n = 341), a 65 10-mmHg intraocular pressure (IOP) increase from baseline was observed in (12.6% after the first treatment, and 15.4% after the second). The IOP increases were usually transient and controlled with medication or observation; an additional 10.3% of patients initiated IOP-lowering medications after the second treatment. A 65 15-letter improvement in BCVA from baseline was achieved by 30% and 32% of patients 60 days after the first and second DEX implant, respectively. CONCLUSIONS: Among patients with macular edema owing to BRVO or CRVO, single and repeated treatment with DEX implant had a favorable safety profile over 12 months. In patients who qualified for and received 2 DEX implant injections, the efficacy and safety of the 2 implants were similar with the exception of cataract progression

    Dexamethasone Intravitreal Implant in Patients with Macular Edema Related to Branch or Central Retinal Vein Occlusion

    No full text
    Objective: To evaluate the safety and efficacy of 1 or 2 treatments with dexamethasone intravitreal implant (DEX implant) over 12 months in eyes with macular edema owing to branch or central retinal vein occlusion (BRVO or CRVO).Design: Two identical, multicenter, prospective studies included a randomized, 6-month, double-masked, sham-controlled phase followed by a 6-month open-label extension.Participants: We included 1256 patients with vision loss owing to macular edema associated with BRVO or CRVO.Methods: At baseline, patients received DEX implant 0.7 mg (n = 421), DEX implant 0.35 mg (n = 412), or sham (n = 423) in the study eye. At day 180, patients could receive DEX implant 0.7 mg if best-corrected visual acuity (BCVA) was 250 mu m.Main Outcome Measures: the primary outcome for the open-label extension was safety; BCVA was also evaluated.Results: At day 180, 997 patients received open-label DEX implant. Except for cataract, the incidence of ocular adverse events was similar in patients who received their first or second DEX implant. Over 12 months, cataract progression occurred in 90 of 302 phakic eyes (29.8%) that received 2 DEX implant 0.7 mg injections versus 5 of 88 sham-treated phakic eyes (5.7%); cataract surgery was performed in 4 of 302 (1.3%) and 1 of 88 (1.1%) eyes, respectively. in the group receiving two 0.7-mg DEX implants (n = 341), a >= 10-mmHg intraocular pressure (IOP) increase from baseline was observed in (12.6% after the first treatment, and 15.4% after the second). the IOP increases were usually transient and controlled with medication or observation; an additional 10.3% of patients initiated IOP-lowering medications after the second treatment. A >= 15-letter improvement in BCVA from baseline was achieved by 30% and 32% of patients 60 days after the first and second DEX implant, respectively.Conclusions: Among patients with macular edema owing to BRVO or CRVO, single and repeated treatment with DEX implant had a favorable safety profile over 12 months. in patients who qualified for and received 2 DEX implant injections, the efficacy and safety of the 2 implants were similar with the exception of cataract progression.Financial Disclosure(s): Proprietary or commercial disclosure may be found after the references. Ophthalmology 2011; 118: 2453-2460 (C) 2011 by the American Academy of Ophthalmology.Allergan, Inc.AllerganAllergan, NovartisAlimera, Allergan, Genentech, RegeneronAlcon, Allergan, BayerWills Eye Inst, Philadelphia, PA 19107 USAUniv Vita Salute, Hosp San Raffaele, Milan, ItalyUniversidade Federal de São Paulo, Vis Inst, São Paulo, BrazilStanford Univ, Stanford, CA 94305 USAUniv Sydney, Sydney, NSW 2006, AustraliaOphthalm Consultants Boston, Boston, MA USATel Aviv Med Ctr & Sch Med, Tel Aviv, IsraelAsan Med Ctr, Seoul, South KoreaAllergan Pharmaceut Inc, Irvine, CA USAUniversidade Federal de São Paulo, Vis Inst, São Paulo, BrazilWeb of Scienc
    corecore