222 research outputs found

    Study of the processing conditions for stainless steel additive manufacturing using femtosecond laser

    Get PDF
    The use of ultrashort-pulsed (USP) lasers in Additive Manufacturing (AM) enables the processing of different materials and has the potential to reduce the sizes and shapes manufactured with this technology. This work confirms that USP lasers are a viable alternative for Laser Powder Bed Fusion (LPBF) when higher precision is required to manufacture certain critical parts. Promising results were obtained using tailored and own-produced stainless steel powder particles, manufacturing consistent square layers with a series of optimized processing parameters. The critical role of processing parameters is confirmed when using this type of lasers, as a slight deviation of any of them results in an absence of melting. For the first time, melting has been achieved at low pulse repetition (500 kHz) and using low average laser power values (0.5–1 W), by generating heat accumulation at reduced scanning speeds. This opens up the possibility of further reducing the minimum size of parts when using USP lasers for AM

    Exame De Papanicolaou Em Mulheres Encarceradas

    Get PDF
    In Brazil, in 2012, 6.4% of the prison population was made up of women. The aim of the study was to verify the coverage of the Pap smear according to sociodemographic characteristics and health problems reported among incarcerated women. Cross-sectional study conducted from August 2012 to July 2013, considering the records of 702 inmates aged between 25 and 64 years and the duration of imprisonment (not less than 12 months). The average age of the women surveyed was 34.7 years. The performance of cervical cytology was reported by 26.3% of inmates. There were no difference in prevalence according to selected variables. The containment condition enables the implementation of preventive measures such as offering and realization of Pap smear for most inmates. The observed results are worrying and differ significantly from those presented in the national diagnosis on the health of incarcerated women. © 2016, Assocaicao Brasileira de Pos, Gradacao em Saude Coletiva. All rights reserved.19367567

    Direct patterning of periodic semiconductor nanostructures using single-pulse nanosecond laser interference

    Get PDF
    We demonstrate an effective method for fabricating large area periodic two-dimensional semiconductor nanostructures by means of single-pulse laser interference. Utilizing a pulsed nanosecond laser with a wavelength of 355 nm, precisely ordered square arrays of nanoholes with a periodicity of 300 nm were successfully obtained on UV photoresist and also directly via a resist-free process onto semiconductor wafers. We show improved uniformity using a beam-shaping system consisting of cylindrical lenses with which we can demonstrate highly regular arrays over hundreds of square micrometers. We propose that our novel observation of direct pattern transfer to GaAs is due to local congruent evaporation and subsequent droplet etching of the surface. The results show that single-pulse interference can provide a rapid and highly efficient route for the realization of wide-area periodic nanostructures on semiconductors and potentially on other engineering materials

    LIPSS manufacturing with regularity control through laser wavefront curvature

    Get PDF
    Laser-Induced Periodic Surface Structures (LIPSS) manufacturing is a convenient laser direct-writing technique for the fabrication of nanostructures with adaptable characteristics on the surface of virtually any material. In this paper, we study the influence of 1D laser wavefront curvature on nanoripples spatial regularity, by irradiating stainless steel with a line-focused ultrafast laser beam emitting 120 fs pulses at a wavelength of 800 nm and with 1 kHz repetition rate. We find high correlation between the spatial regularity of the fabricated nanostructures and the wavefront characteristics of the laser beam, with higher regularity being found with quasi-plane-wave illumination. Our results provide insight regarding the control of LIPSS regularity, which is essential for industrial applications involving the LIPSS generation technique

    Polarization conversion on nanostructured metallic surfaces fabricated by LIPSS

    Get PDF
    Waveplates modify polarization by generating a phase change. Laser Induced Periodic Surface Structures (LIPSS) have recently started to be studied as waveplates due to the birefringence in-duced by the nanoripples, easily fabricated in a one-step process by laser, where LIPSS morphology is defined by the characteristics of the laser process parameters and the substrate material. The optical properties of these waveplates are defined by LIPSS parameters such as period, depth or width of the ripples. In this work we have deposited thin film coatings on stainless steel samples containing LIPSS for different coating thickness and composition. Results show that thin film coatings are a good candidate for the tunability of LIPSS birefringence since the coating modifies the induced polarization change and reflectivity of the sample depending on coating thickness and composition, as expected from numerical simulations

    Gravity on codimension 2 brane worlds

    Full text link
    We compute the matching conditions for a general thick codimension 2 brane, a necessary previous step towards the investigation of gravitational phenomena in codimension 2 braneworlds. We show that, provided the brane is weakly curved, they are specified by the integral in the extra dimensions of the brane energy-momentum, independently of its detailed internal structure. These general matching conditions can then be used as boundary conditions for the bulk solution. By evaluating Einstein equations at the brane boundary we are able to write an evolution equation for the induced metric on the brane depending only on physical brane parameters and the bulk energy-momentum tensor. We particularise to a cosmological metric and show that a realistic cosmology can be obtained in the simplest case of having just a non-zero cosmological constant in the bulk. We point out several parallelisms between this case and the codimension 1 brane worlds in an AdS space.Comment: 24 page

    Higher codimension braneworlds from intersecting branes

    Full text link
    We study the matching conditions of intersecting brane worlds in Lovelock gravity in arbitrary dimension. We show that intersecting various codimension 1 and/or codimension 2 branes one can find solutions that represent energy-momentum densities localized in the intersection, providing thus the first examples of infinitesimally thin higher codimension braneworlds that are free of singularities and where the backreaction of the brane in the background is fully taken into account.Comment: 20 pages; v2. references and comments added to match the published versio
    corecore