252 research outputs found

    The Effect of Hot Deformation Parameters on Microstructure Evolution of the α-Phase in Ti-6Al-4V

    Get PDF
    The effect of high-temperature deformation and the influence of hot working parameters on microstructure evolution during isothermal hot forging of Ti-6Al-4V in the alpha phase field were investigated. A series of hot isothermal axis-symmetric compression tests were carried out at temperatures both low and high in the alpha stability field [(1153 K and 1223 K (880 °C and 950 °C), respectively], using three strain rates (0.01, 0.1 and 1.0/s) relevant to industrial press forging. The microstructures and orientation of the alpha laths were determined using optical microscopy and electron backscatter diffraction techniques. The experimental results show that there is a change in lath morphology of the secondary α phase under the influence of the deformation parameters, and that α lath thickness appears to have little influence on flow behavior

    Annealing behavior of cryogenically-rolled Cu-30Zn brass

    Get PDF
    The static-annealing behavior of cryogenically-rolled Cu-30Zn brass over a wide range of temperature (100-900 °C) was established. Between 300 and 400 °C, microstructure and texture evolution were dominated by discontinuous recrystallization. At temperatures of 500 °C and higher, annealing was interpreted in terms of normal grain growth. The recrystallized microstructure developed at 400 °C was ultrafine with a mean grain size of 0.8 μm, fraction of high-angle boundaries of 90 pct., and a weak crystallographic texture

    The Kinetics of Primary Alpha Plate Growth in Titanium Alloys

    Get PDF
    The kinetics of primary alpha-Ti colony/Widmanstatten plate growth from the beta are examined, comparing model to experiment. The plate growth velocity depends sensitively both on the diffusivity D(T) of the rate-limiting species and on the supersaturation around the growing plate. These result in a maxima in growth velocity around 40 K below the transus, once sufficient supersaturation is available to drive plate growth. In Ti-6246, the plate growth velocity was found to be around 0.32 um min-1 at 850 oC, which was in good agreement with the model prediction of 0.36 um min-1 . The solute field around the growing plates, and the plate thickness, was found to be quite variable, due to the intergrowth of plates and soft impingement. This solute field was found to extend to up to 30 nm, and the interface concentration in the beta was found to be around 6.4 at.% Mo. It was found that increasing O content will have minimal effect on the plate lengths expected during continuous cooling; in contrast, Mo approximately doubles the plate lengths obtained for every 2 wt.% Mo reduction. Alloys using V as the beta stabiliser instead of Mo are expected to have much faster plate growth kinetics at nominally equivalent V contents. These findings will provide a useful tool for the integrated design of alloys and process routes to achieve tailored microstructures.Comment: Revised version resubmitted to journa

    High-temperature deformation behavior of a gamma TiAl alloy-microstructural evolution and mechanisms

    Get PDF
    The present investigation was carried out in the context of the internal-variable theory of inelastic deformation and the dynamic-materials model (DMM), to shed light on the high-temperature deformation mechanisms in TiAl. A series of load-relaxation tests and tensile tests were conducted on a fine-grained duplex gamma TiAl alloy at temperatures ranging from 800 degreesC to 1050 degreesC. Results of the load-relaxation tests, in which the deformation took place at an infinitesimal level (epsilon congruent to 0.05), showed that the deformation behavior of the alloy was well described by the sum of dislocation-glide and dislocation-climb processes. To investigate the deformation behavior of the fine-grained duplex gamma TiAl alloy at a finite strain level, processing maps were constructed on the basis of a DMM. For this purpose, compression tests were carried out at temperatures ranging from 800 degreesC to 1250 degreesC using strain rates ranging from 10 to 10(-4)/s. Two domains were identified and characterized in the processing maps obtained at finite strain levels (0.2 and 0.6). One domain was found in the region of 980 degreesC and 10(-3)/s with a peak efficiency (maximum efficiency of power dissipation) of 48 pct and was identified as a domain of dynamic recrystallization (DRx) from microstructural observations. Another domain with a peak efficiency of 64 pct was located in the region of 1250 degreesC and 10(-4)/s and was considered to be a domain of superplasticity.ope
    corecore