108 research outputs found
Quantifying the onset of the concentric phase of the force–time record during jumping
Thirteen college students performed a drop jump from height equal to their peak vertical jump, single leg jumps from the left and right legs, and a counter movement jump. Vertical ground reaction force (GRF) obtained via an AMTI force plate and video analysis of markers placed on the hip, knee, lateral malleolus, and fifth metatarsal were used to estimate reaction forces on the knee joint. One-way Repeated Measures ANOVA indicated no differences for knee joint reaction forces relative to body weight or peak GRF for any of the jumps (p \u3e 0.05). Average measures Intraclass Correlation Coefficients ranged from r = 0.90 to 0.97. Results indicate that peak GRF and knee joint reaction forces during the drop jump, counter movement jump, and single leg left and right leg jumps are reliable measures
Cooperative Roles of CTLA-4 and Regulatory T Cells in Tolerance to an Islet Cell Antigen
Adoptive transfer of ovalbumin (OVA)-specific T cells from the DO.11 TCR transgenic mouse on a Rag−/− background into mice expressing OVA in pancreatic islet cells induces acute insulitis and diabetes only if endogenous lymphocytes, including regulatory T cells, are removed. When wild-type OVA-specific/Rag−/− T cells, which are all CD25−, are transferred into islet antigen–expressing mice, peripheral immunization with OVA in adjuvant is needed to induce diabetes. In contrast, naive CTLA-4−/−/Rag−/− OVA-specific T cells (also CD25−) develop into Th1 effectors and induce disease upon recognition of the self-antigen alone. These results suggest that CTLA-4 functions to increase the activation threshold of autoreactive T cells, because in its absence self-antigen is sufficient to trigger autoimmunity without peripheral immunization. Further, CTLA-4 and regulatory T cells act cooperatively to maintain tolerance, indicating that the function of CTLA-4 is independent of regulatory cells, and deficiency of both is required to induce pathologic immune responses against the islet self-antigen
Energy Requirements for Quantum Data Compression and 1-1 Coding
By looking at quantum data compression in the second quantisation, we present
a new model for the efficient generation and use of variable length codes. In
this picture lossless data compression can be seen as the {\em minimum energy}
required to faithfully represent or transmit classical information contained
within a quantum state.
In order to represent information we create quanta in some predefined modes
(i.e. frequencies) prepared in one of two possible internal states (the
information carrying degrees of freedom). Data compression is now seen as the
selective annihilation of these quanta, the energy of whom is effectively
dissipated into the environment. As any increase in the energy of the
environment is intricately linked to any information loss and is subject to
Landauer's erasure principle, we use this principle to distinguish lossless and
lossy schemes and to suggest bounds on the efficiency of our lossless
compression protocol.
In line with the work of Bostr\"{o}m and Felbinger \cite{bostroem}, we also
show that when using variable length codes the classical notions of prefix or
uniquely decipherable codes are unnecessarily restrictive given the structure
of quantum mechanics and that a 1-1 mapping is sufficient. In the absence of
this restraint we translate existing classical results on 1-1 coding to the
quantum domain to derive a new upper bound on the compression of quantum
information. Finally we present a simple quantum circuit to implement our
scheme.Comment: 10 pages, 5 figure
Nonlinear electrodynamics of p-wave superconductors
We consider the Maxwell-London electrodynamics of three dimensional
superconductors in p-wave pairing states with nodal points or lines in the
energy gap. The current-velocity relation is then nonlinear in the applied
field, cubic for point nodes and quadratic for lines. We obtain explicit
angular and depth dependent expressions for measurable quantities such as the
transverse magnetic moment, and associated torque. These dependences are
different for point and line nodes and can be used to distinguish between
different order parameters. We discuss the experimental feasibility of this
method, and bring forth its advantages, as well as limitations that might be
present.Comment: Fourteen pages RevTex plus four postscript figure
Recent developments in unconventional superconductivity theory
The review of recent developments in the unconventional superconductivity
theory is given. In the fist part I consider the physical origin of the Kerr
rotation polarization of light reflected from the surface of superconducting
. Then the comparison of magneto-optical responses in
superconductors with orbital and spin spontaneous magnetization is presented.
The latter result is applied to the estimation of the magneto-optical
properties of neutral superfluids with spontaneous magnetization. The second
part is devoted to the natural optical activity or gyrotropy properties of
noncentrosymmetric metals in their normal and superconducting states. The
temperature behavior of the gyrotropy coefficient is compared with the
temperature behavior of paramagnetic susceptibility determining the noticeable
increase of the paramagnetic limiting field in noncentrosymmetric
superconductors. In the last chapter I describe the order parameter and the
symmetry of superconducting state in the itinerant ferromagnet with
orthorhombic symmetry. Finally the Josephson coupling between two adjacent
ferromagnet superconducting domains is discussed.Comment: 15 page
Mass matrix Ansatz and lepton flavor violation in the THDM-III
Predictive Higgs-fermion couplings can be obtained when a specific texture
for the fermion mass matrices is included in the general two-Higgs doublet
model. We derive the form of these couplings in the charged lepton sector using
a Hermitian mass matrix Ansatz with four-texture zeros. The presence of
unconstrained phases in the vertices phi-li-lj modifies the pattern of
flavor-violating Higgs interactions. Bounds on the model parameters are
obtained from present limits on rare lepton flavor violating processes, which
could be extended further by the search for the decay tau -> mu mu mu and mu-e
conversion at future experiments. The signal from Higgs boson decays phi -> tau
mu could be searched at the large hadron collider (LHC), while e-mu transitions
could produce a detectable signal at a future e mu-collider, through the
reaction e mu -> h0 -> tau tau.Comment: 17 pages, 9 figure
Determination of |Vcb| using the semileptonic decay \bar{B}^0 --> D^{*+}e^-\bar{\nu}
We present a measurement of the Cabibbo-Kobayashi-Maskawa (CKM) matrix
element |Vcb| using a 10.2 fb^{-1} data sample recorded at the \Upsilon(4S)
resonance with the Belle detector at the KEKB asymmetric e^+e^- storage ring.
By extrapolating the differential decay width of the \bar{B}^0 -->
D^{*+}e^-\bar{\nu} decay to the kinematic limit at which the D^{*+} is at rest
with respect to the \bar{B}^0, we extract the product of |Vcb| with the
normalization of the decay form factor F(1), |Vcb |F(1)=
(3.54+/-0.19+/-0.18)x10^{-2}, where the first error is statistical and the
second is systematic. A value of |Vcb| = (3.88+/-0.21+/-0.20+/-0.19)x10^{-2} is
obtained using a theoretical calculation of F(1), where the third error is due
to the theoretical uncertainty in the value of F(1). The branching fraction
B(\bar{B}^0 --> D^{*+}e^-\bar{\nu}) is measured to be
(4.59+/-0.23+/-0.40)x10^{-2}.Comment: 20 pages, 6 figures, elsart.cls, submitted to PL
Energy Flow in the Hadronic Final State of Diffractive and Non-Diffractive Deep-Inelastic Scattering at HERA
An investigation of the hadronic final state in diffractive and
non--diffractive deep--inelastic electron--proton scattering at HERA is
presented, where diffractive data are selected experimentally by demanding a
large gap in pseudo --rapidity around the proton remnant direction. The
transverse energy flow in the hadronic final state is evaluated using a set of
estimators which quantify topological properties. Using available Monte Carlo
QCD calculations, it is demonstrated that the final state in diffractive DIS
exhibits the features expected if the interaction is interpreted as the
scattering of an electron off a current quark with associated effects of
perturbative QCD. A model in which deep--inelastic diffraction is taken to be
the exchange of a pomeron with partonic structure is found to reproduce the
measurements well. Models for deep--inelastic scattering, in which a
sizeable diffractive contribution is present because of non--perturbative
effects in the production of the hadronic final state, reproduce the general
tendencies of the data but in all give a worse description.Comment: 22 pages, latex, 6 Figures appended as uuencoded fil
Measurement of Leading Proton and Neutron Production in Deep Inelastic Scattering at HERA
Deep--inelastic scattering events with a leading baryon have been detected by
the H1 experiment at HERA using a forward proton spectrometer and a forward
neutron calorimeter. Semi--inclusive cross sections have been measured in the
kinematic region 2 <= Q^2 <= 50 GeV^2, 6.10^-5 <= x <= 6.10^-3 and baryon p_T
<= MeV, for events with a final state proton with energy 580 <= E' <= 740 GeV,
or a neutron with energy E' >= 160 GeV. The measurements are used to test
production models and factorization hypotheses. A Regge model of leading baryon
production which consists of pion, pomeron and secondary reggeon exchanges
gives an acceptable description of both semi-inclusive cross sections in the
region 0.7 <= E'/E_p <= 0.9, where E_p is the proton beam energy. The leading
neutron data are used to estimate for the first time the structure function of
the pion at small Bjorken--x.Comment: 30 pages, 9 figures, 2 tables, submitted to Eur. Phys.
Bounds on the possible evolution of the Gravitational Constant from Cosmological Type-Ia Supernovae
Recent high-redshift Type Ia supernovae results can be used to set new bounds
on a possible variation of the gravitational constant . If the local value
of at the space-time location of distant supernovae is different, it would
change both the kinetic energy release and the amount of Ni synthesized
in the supernova outburst. Both effects are related to a change in the
Chandrasekhar mass . In addition, the integrated
variation of with time would also affect the cosmic evolution and therefore
the luminosity distance relation. We show that the later effect in the
magnitudes of Type Ia supernovae is typically several times smaller than the
change produced by the corresponding variation of the Chandrasekhar mass. We
investigate in a consistent way how a varying could modify the Hubble
diagram of Type Ia supernovae and how these results can be used to set upper
bounds to a hypothetical variation of . We find G/G_0 \la 1.1 and G'/G
\la 10^{-11} yr^{-1} at redshifts . These new bounds extend the
currently available constrains on the evolution of all the way from solar
and stellar distances to typical scales of Gpc/Gyr, i.e. by more than 15 orders
of magnitudes in time and distance.Comment: 9 pages, 4 figures, Phys. Rev. D. in pres
- …