1,588 research outputs found
Effects of rare earth nanoparticles (M = Sm2O3, Ho2O3, Nd2O3) addition on the microstructure and superconducting transition of Bi1.6Pb0.4Sr2Ca2Cu3O10+δ ceramics
The effect of rare earth nanoparticles, M=Sm2O3, Nd2O3 and Ho2O3 added to (Bi1.6Pb0.4Sr2Ca2Cu3O10+δ)1-x(M)x, where x = 0.00 - 0.05, superconductor were studied by X-ray diffraction technique (XRD), resistivity (R), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDX). The volume fraction of high-Tc phase, Bi-2223, decreased from 84% for pure sample to 48, 30 and 23% at x = 0.05 for Sm2O3, Ho2O3 and Nd2O3 additions, respectively. The critical temperature Tc(R=0) that is 102 K for the pure sample decreased to 78, 73 and 69 K at x = 0.05 for samples with Sm2O3, Nd2O3 and Ho2O3 nanoparticles additions, respectively. The additions of rare earth nanoparticles decreased the grain size and increased the random orientation of the grains. The results showed that the phases’ formations, variations of lattice parameters and electrical properties are sensitive to the size of nanoparticles and magnetic properties of its ions
Mesenchymal stem cell secretes microparticles enriched in pre-microRNAs
10.1093/nar/gkp857Nucleic Acids Research381215-22
Scaling limit of virtual states of triatomic systems
For a system with three identical atoms, the dependence of the wave
virtual state energy on the weakly bound dimer and trimer binding energies is
calculated in a form of a universal scaling function. The scaling function is
obtained from a renormalizable three-body model with a pairwise Dirac-delta
interaction. It was also discussed the threshold condition for the appearance
of the trimer virtual state.Comment: 9 pages, 3 figure
Relativistic nuclear structure effects in quasielastic neutrino scattering
Charged-current cross sections are calculated for quasielastic neutrino and
antineutrino scattering using a relativistic meson-nucleon model. We examine
how nuclear-structure effects, such as relativistic random-phase-approximation
(RPA) corrections and momentum-dependent nucleon self-energies, influence the
extraction of the axial form factor of the nucleon. RPA corrections are
important only at low-momentum transfers. In contrast, the momentum dependence
of the relativistic self-energies changes appreciably the value of the
axial-mass parameter, , extracted from dipole fits to the axial form
factor. Using Brookhaven's experimental neutrino spectrum we estimate the
sensitivity of M to various relativistic nuclear-structure effects.Comment: 26 pages, revtex, 6 postscript figures (available upon request
Liberating Efimov physics from three dimensions
When two particles attract via a resonant short-range interaction, three
particles always form an infinite tower of bound states characterized by a
discrete scaling symmetry. It has been considered that this Efimov effect
exists only in three dimensions. Here we review how the Efimov physics can be
liberated from three dimensions by considering two-body and three-body
interactions in mixed dimensions and four-body interaction in one dimension. In
such new systems, intriguing phenomena appear, such as confinement-induced
Efimov effect, Bose-Fermi crossover in Efimov spectrum, and formation of
interlayer Efimov trimers. Some of them are observable in ultracold atom
experiments and we believe that this study significantly broadens our horizons
of universal Efimov physics.Comment: 17 pages, 5 figures, contribution to a special issue of Few-Body
Systems devoted to Efimov Physic
Divergence of the systemic immune response following oral infection with distinct strains of P orphyromonas gingivalis
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/94514/1/omi12001.pd
Recommended from our members
Understanding and managing risk in software systems
When software is used in safety-critical, security-critical, or mission-critical situations, it is imperative to understand and manage the risks involved. A risk assessment methodology and toolset have been developed which are specific to software systems. This paper describes the concepts of the methodology, with emphasis on the experience of designing a toolset to support the methodology. Also presented are results of applying the methodology to two real software-based products: the software toolset itself, and a network firewall
Tryptophan Oxidative Metabolism Catalyzed by Geobacillus Stearothermophilus: A Thermophile Isolated from Kuwait Soil Contaminated with Petroleum Hydrocarbons
Tryptophan metabolism has been extensively studied in humans as well as in soil. Its metabolism takes place mainly through kynurenine pathway yielding hydroxylated, deaminated and many other products of physiological significance. However, tryptophan metabolism has not been studied in an isolated thermophilic bacterium. Geobacillus stearothermophilus is a local thermophile isolated from Kuwait desert soil contaminated with petroleum hydrocarbons. The bacterium grows well at 65 °C in 0.05 M phosphate buffer (pH 7), when supplied with organic compounds as a carbon source and has a good potential for transformation of steroids and related molecules. In the present study, we used tryptophan ethyl ester as a carbon source for the bacterium to study the catabolism of the amino acid at pH 5 and pH 7. In this endeavor, we have resolved twenty one transformation products of tryptophan by GC/LC and have identified them through their mass spectral fragmentation
Recommended from our members
Radio identifications in the NEP Deep Field
We have imaged the AKARI Deep Field with the GMRT radio telescope at 610 MHz, detecting 1224 radio components, which are optically identified with 455 optical galaxies having a mean r' magnitude brighter of 22.5 (to a completeness limit of 25.4 mag), and an average redshift ∼ 0.8
- …