287 research outputs found

    Covariant N=2 heterotic string in four dimensions

    Get PDF
    We construct a covariant formulation of the heterotic superstring on K3 times T^2 with manifest N=2 supersymmetry. We show how projective superspace appears naturally in the hybrid formulation giving a (partially) geometric interpretation of the harmonic parameter. The low-energy effective action for this theory is given by a non-standard form of N=2 supergravity which is intimately related to the N=1 old-minimal formulation. This formalism can be used to derive new descriptions of interacting projective superspace field theories using Berkovits' open string field theory and the the heterotic Berkovits-Okawa-Zwiebach construction.Comment: 11+3 page

    Characterization of Open-Cell Sponges via Magnetic Resonance and X-ray Tomography

    Get PDF
    The applications of polymeric sponges are varied, ranging from cleaning and filtration to medical applications. The specific properties of polymeric foams, such as pore size and connectivity, are dependent on their constituent materials and production methods. Nuclear magnetic resonance imaging (MRI) and X-ray micro-computed tomography (mu CT) offer complementary information about the structure and properties of porous media. In this study, we employed MRI, in combination with mu CT, to characterize the structure of polymeric open-cell foam, and to determine how it changes upon compression, mu CT was used to identify the morphology of the pores within sponge plugs, extracted from polyurethane open-cell sponges. MRI T-2 relaxation maps and bulk T-2 relaxation times measurements were performed for 7 degrees dH water contained within the same polyurethane foams used for mu CT. Magnetic resonance and mu CT measurements were conducted on both uncompressed and 60% compressed sponge plugs. Compression was achieved using a graduated sample holder with plunger. A relationship between the average T-2 relaxation time and maximum opening was observed, where smaller maximum openings were found to have a shorter T-2 relaxation times. It was also found that upon compression, the average maximum opening of pores decreased. Average pore size ranges of 375-632 +/- 1 mu m, for uncompressed plugs, and 301-473 +/- 1 mu m, for compressed plugs, were observed. By determining maximum opening values and T-2 relaxation times, it was observed that the pore structure varies between sponges within the same production batch, as well as even with a single sponge

    Instanton Calculations for N=1/ 2 super Yang-Mills Theory

    Full text link
    We study (anti-) instantons in super Yang-Mills theories defined on a non anticommutative superspace. The instanton solution that we consider is the same as in ordinary SU(2) N=1 super Yang-Mills, but the anti-instanton receives corrections to the U(1) part of the connection which depend quadratically on fermionic coordinates, and linearly on the deformation parameter C. By substituting the exact solution into the classical Lagrangian the topological charge density receives a new contribution which is quadratic in C and quartic in the fermionic zero-modes. The topological charge turns out to be zero. We perform an expansion around the exact classical solution in presence of a fermionic background and calculate the full superdeterminant contributing to the one-loop partition function. We find that the one-loop partition function is not modified with respect to the usual N=1 super Yang-Mills.Comment: 27 pages, harmvac, Redone the computation of topological charge, a section has been rewritten and references adde

    New extended superconformal sigma models and Quaternion Kahler manifolds

    Full text link
    Quaternion Kahler manifolds are known to be the target spaces for matter hypermultiplets coupled to N=2 supergravity. It is also known that there is a one-to-one correspondence between 4n-dimensional quaternion Kahler manifolds and those 4(n+1)-dimensional hyperkahler spaces which are the target spaces for rigid superconformal hypermultiplets (such spaces are called hyperkahler cones). In this paper we present a projective-superspace construction to generate a hyperkahler cone M^{4(n+1)}_H of dimension 4(n+1) from a 2n-dimensional real analytic Kahler-Hodge manifold M^{2n}_K. The latter emerges as a maximal Kahler submanifold of the 4n-dimensional quaternion Kahler space M^{4n}_Q such that its Swann bundle coincides with M^{4(n+1)}_H. Our approach should be useful for the explicit construction of new quaternion Kahler metrics. The results obtained are also of interest, e.g., in the context of supergravity reduction N=2 --> N=1, or alternatively from the point of view of embedding N=1 matter-coupled supergravity into an N=2 theory.Comment: 30 page

    3D Printing of a Multi-Layered Polypill Containing Six Drugs Using a Novel Stereolithographic Method

    Get PDF
    YesThree-dimensional printing (3DP) has demonstrated great potential for multi-material fabrication because of its capability for printing bespoke and spatially separated material conformations. Such a concept could revolutionise the pharmaceutical industry, enabling the production of personalised, multi-layered drug products on demand. Here, we developed a novel stereolithographic (SLA) 3D printing method that, for the first time, can be used to fabricate multi-layer constructs (polypills) with variable drug content and/or shape. Using this technique, six drugs, including paracetamol, cffeine, naproxen, chloramphenicol, prednisolone and aspirin, were printed with dfferent geometries and material compositions. Drug distribution was visualised using Raman microscopy, which showed that whilst separate layers were successfully printed, several of the drugs diffused across the layers depending on their amorphous or crystalline phase. The printed constructs demonstrated excellent physical properties and the different material inclusions enabled distinct drug release profiles of the six actives within dissolution tests. For the first time, this paper demonstrates the feasibility of SLA printing as an innovative platform for multi-drug therapy production, facilitating a new era of personalised polypills

    Digestibility and IgE-Binding of Glycosylated Codfish Parvalbumin

    Get PDF
    Food-processing conditions may alter the allergenicity of food proteins by different means. In this study, the effect of the glycosylation as a result of thermal treatment on the digestibility and IgE-binding of codfish parvalbumin is investigated. Native and glycosylated parvalbumins were digested with pepsin at various conditions relevant for the gastrointestinal tract. Intact proteins and peptides were analysed for apparent molecular weight and IgE-binding. Glycosylation did not substantially affect the digestion. Although the peptides resulting from digestion were relatively large (3 and 4 kDa), the IgE-binding was strongly diminished. However, the glycosylated parvalbumin had a strong propensity to form dimers and tetramers, and these multimers bound IgE intensely, suggesting stronger IgE-binding than monomeric parvalbumin. We conclude that glycosylation of codfish parvalbumin does not affect the digestibility of parvalbumin and that the peptides resulting from this digestion show low IgE-binding, regardless of glycosylation. Glycosylation of parvalbumin leads to the formation of higher order structures that are more potent IgE binders than native, monomeric parvalbumin. Therefore, food-processing conditions applied to fish allergen can potentially lead to increased allergenicity, even while the protein's digestibility is not affected by such processing

    Characterization of the n-TOF EAR-2 neutron beam

    Get PDF
    The experimental area 2 (EAR-2) at CERNs neutron time-of-flight facility (n-TOF), which is operational since 2014, is designed and built as a short-distance complement to the experimental area 1 (EAR-1). The Parallel Plate Avalanche Counter (PPAC) monitor experiment was performed to characterize the beam prole and the shape of the neutron 'ux at EAR-2. The prompt γ-flash which is used for calibrating the time-of-flight at EAR-1 is not seen by PPAC at EAR-2, shedding light on the physical origin of this γ-flash

    The measurement programme at the neutron time-of-flight facility n-TOF at CERN

    Get PDF
    Neutron-induced reaction cross sections are important for a wide variety of research fields ranging from the study of nuclear level densities, nucleosynthesis to applications of nuclear technology like design, and criticality and safety assessment of existing and future nuclear reactors, radiation dosimetry, medical applications, nuclear waste transmutation, accelerator-driven systems and fuel cycle investigations. Simulations and calculations of nuclear technology applications largely rely on evaluated nuclear data libraries. The evaluations in these libraries are based both on experimental data and theoretical models. CERN's neutron time-of-flight facility n-TOF has produced a considerable amount of experimental data since it has become fully operational with the start of its scientific measurement programme in 2001. While for a long period a single measurement station (EAR1) located at 185 m from the neutron production target was available, the construction of a second beam line at 20 m (EAR2) in 2014 has substantially increased the measurement capabilities of the facility. An outline of the experimental nuclear data activities at n-TOF will be presented

    Search for a W' boson decaying to a bottom quark and a top quark in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    Results are presented from a search for a W' boson using a dataset corresponding to 5.0 inverse femtobarns of integrated luminosity collected during 2011 by the CMS experiment at the LHC in pp collisions at sqrt(s)=7 TeV. The W' boson is modeled as a heavy W boson, but different scenarios for the couplings to fermions are considered, involving both left-handed and right-handed chiral projections of the fermions, as well as an arbitrary mixture of the two. The search is performed in the decay channel W' to t b, leading to a final state signature with a single lepton (e, mu), missing transverse energy, and jets, at least one of which is tagged as a b-jet. A W' boson that couples to fermions with the same coupling constant as the W, but to the right-handed rather than left-handed chiral projections, is excluded for masses below 1.85 TeV at the 95% confidence level. For the first time using LHC data, constraints on the W' gauge coupling for a set of left- and right-handed coupling combinations have been placed. These results represent a significant improvement over previously published limits.Comment: Submitted to Physics Letters B. Replaced with version publishe

    Search for the standard model Higgs boson decaying into two photons in pp collisions at sqrt(s)=7 TeV

    Get PDF
    A search for a Higgs boson decaying into two photons is described. The analysis is performed using a dataset recorded by the CMS experiment at the LHC from pp collisions at a centre-of-mass energy of 7 TeV, which corresponds to an integrated luminosity of 4.8 inverse femtobarns. Limits are set on the cross section of the standard model Higgs boson decaying to two photons. The expected exclusion limit at 95% confidence level is between 1.4 and 2.4 times the standard model cross section in the mass range between 110 and 150 GeV. The analysis of the data excludes, at 95% confidence level, the standard model Higgs boson decaying into two photons in the mass range 128 to 132 GeV. The largest excess of events above the expected standard model background is observed for a Higgs boson mass hypothesis of 124 GeV with a local significance of 3.1 sigma. The global significance of observing an excess with a local significance greater than 3.1 sigma anywhere in the search range 110-150 GeV is estimated to be 1.8 sigma. More data are required to ascertain the origin of this excess.Comment: Submitted to Physics Letters
    corecore