55 research outputs found

    Consistent irrelevant deformations of interacting conformal field theories

    Full text link
    I show that under certain conditions it is possible to define consistent irrelevant deformations of interacting conformal field theories. The deformations are finite or have a unique running scale ("quasi-finite"). They are made of an infinite number of lagrangian terms and a finite number of independent parameters that renormalize coherently. The coefficients of the irrelevant terms are determined imposing that the beta functions of the dimensionless combinations of couplings vanish ("quasi-finiteness equations"). The expansion in powers of the energy is meaningful for energies much smaller than an effective Planck mass. Multiple deformations can be considered also. I study the general conditions to have non-trivial solutions. As an example, I construct the Pauli deformation of the IR fixed point of massless non-Abelian Yang-Mills theory with N_c colors and N_f <~ 11N_c/2 flavors and compute the couplings of the term F^3 and the four-fermion vertices. Another interesting application is the construction of finite chiral irrelevant deformations of N=2 and N=4 superconformal field theories. The results of this paper suggest that power-counting non-renormalizable theories might play a role in the description of fundamental physics.Comment: 23 pages, 5 figures; reference updated - JHE

    Twist-3 Distribute Amplitude of the Pion in QCD Sum Rules

    Full text link
    We apply the background field method to calculate the moments of the pion two-particles twist-3 distribution amplitude (DA) ϕp(ξ)\phi_p(\xi) in QCD sum rules. In this paper,we do not use the equation of motion for the quarks inside the pion since they are not on shell and introduce a new parameter m0pm_0^p to be determined. We get the parameter m0p1.30GeVm_0^p\approx1.30GeV in this approach. If assuming the expansion of ϕp(ξ)\phi_p(\xi) in the series in Gegenbauer polynomials Cn1/2(ξ)C_n^{1/2}(\xi), one can obtain its approximate expression which can be determined by its first few moments.Comment: 12 pages, 3 figure

    Fixing the conformal window in QCD

    Get PDF
    A physical characterization of Landau singularities is emphasized, which should trace the lower boundary N_f^* of the conformal window in QCD and supersymmetric QCD. A natural way to disentangle ``perturbative'' from ``non-perturbative'' contributions to amplitudes below N_f^* is suggested. Assuming an infrared fixed point persists in the perturbative part of the QCD coupling even below N_f^* leads to the condition \gamma(N_f^*)=1, where \gamma is the critical exponent. Using the Banks-Zaks expansion, one gets 4<N_f^*<6. This result is incompatible with the existence of an analogue of Seiberg duality in QCD. The presence of a negative ultraviolet fixed point is required both in QCD and in supersymmetric QCD to preserve causality within the conformal window. Evidence for the existence of such a fixed point in QCD is provided.Comment: 10 pages, 1 figure, extended version of a talk given at the QCDNET2000 meeting, Paris, September 11-14 2000; main new material added is evidence for negative ultraviolet fixed point in QC

    Long-Range Forces of QCD

    Get PDF
    We consider the scattering of two color dipoles (e.g., heavy quarkonium states) at low energy - a QCD analog of Van der Waals interaction. Even though the couplings of the dipoles to the gluon field can be described in perturbation theory, which leads to the potential proportional to (N_c^2-1)/R^{7}, at large distances R the interaction becomes totally non-perturbative. Low-energy QCD theorems are used to evaluate the leading long-distance contribution \sim (N_f^2-1)/(11N_c - 2N_f)^2 R^{-5/2} exp(-2 \mu R) (\mu is the Goldstone boson mass), which is shown to arise from the correlated two-boson exchange. The sum rule which relates the overall strength of the interaction to the energy density of QCD vacuum is derived. Surprisingly, we find that when the size of the dipoles shrinks to zero (the heavy quark limit in the case of quarkonia), the non-perturbative part of the interaction vanishes more slowly than the perturbative part as a consequence of scale anomaly. As an application, we evaluate elastic \pi J/\psi and \pi J/\psi \to \pi \psi' cross sections.Comment: 16pages, 9 eps figures; discussion extended, 2 new references added, to appear in Phys.Rev.

    Polarization phenomena in open charm photoproduction processes

    Get PDF
    We analyze polarization effects in associative photoproduction of pseudoscalar (Dˉ\bar{D}) charmed mesons in exclusive processes γ+NYc+Dˉ\gamma+ N\to Y_c +\bar{D}, Yc=Λc+Y_c=\Lambda_c^+, Σc\Sigma_c. Circularly polarized photons induce nonzero polarization of the YcY_c-hyperon with xx- and zz-components (in the reaction plane) and non vanishing asymmetries Ax{\cal A}_x and Az{\cal A}_z for polarized nucleon target. These polarization observables can be predicted in model-independent way for exclusive Dˉ\bar{D}-production processes in collinear kinematics. The T-even YcY_c-polarization and asymmetries for non-collinear kinematics can be calculated in framework of an effective Lagrangian approach. The depolarization coefficients DabD_{ab}, characterizing the dependence of the YcY_c-polarization on the nucleon polarization are also calculated.Comment: 36 pages 13 figure

    Why Auxiliary Fields Matter: The Strange Case of the 4D, N = 1 Supersymmetric QCD Effective Action

    Get PDF
    Within a four dimensional manifestly N = 1 supersymmetric action, we show that Wess-Zumino-Novikov-Witten (WZNW) terms can be embedded in an extraordinarily simple manner into a purely chiral superaction. In order to achieve this result it is necessary to assign spin-0 and spin-1/2 degrees of freedom both to chiral superfields and as well to non-minimal scalar multiplets. We propose a new formulation for the effective low-energy action of 4D, N = 1 supersymmetric QCD that is consistent with holomorphy through fourth order in the pion superfield. After reduction to a 2D, N = 2 theory we find a new class of manifestly supersymmetric non-linear sigma models with torsion.Comment: 14 pages, UMDEPP 96-1

    Lattice Calculation of Glueball Matrix Elements

    Full text link
    Matrix elements of the form are calculated using the lattice QCD Monte Carlo method. Here, G>|G> is a glueball state with quantum numbers 0++ 0^{++}, 2++ 2^{++}, 0+ 0^{-+} and GG is the gluon field strength operator. The matrix elements are obtained from the hybrid correlation functions of the fuzzy and plaquette operators performed on the 12412^{4} and 14414^{4} lattices at β=5.9\beta = 5.9 and 5.965.96 respectively. These matrix elements are compared with those from the QCD sum rules and the tensor meson dominance model. They are the non-perturbative matrix elements needed in the calculation of the partial widths of J/ΨJ/\Psi radiative decays into glueballs.Comment: 12 pages, UK/92-0

    Scale Setting in QCD and the Momentum Flow in Feynman Diagrams

    Get PDF
    We present a formalism to evaluate QCD diagrams with a single virtual gluon using a running coupling constant at the vertices. This method, which corresponds to an all-order resummation of certain terms in a perturbative series, provides a description of the momentum flow through the gluon propagator. It can be viewed as a generalization of the scale-setting prescription of Brodsky, Lepage and Mackenzie to all orders in perturbation theory. In particular, the approach can be used to investigate why in some cases the ``typical'' momenta in a loop diagram are different from the ``natural'' scale of the process. It offers an intuitive understanding of the appearance of infrared renormalons in perturbation theory and their connection to the rate of convergence of a perturbative series. Moreover, it allows one to separate short- and long-distance contributions by introducing a hard factorization scale. Several applications to one- and two-scale problems are discussed in detail.Comment: eqs.(51) and (83) corrected, minor typographic changes mad

    Combined effect of coherent Z exchange and the hyperfine interaction in atomic PNC

    Get PDF
    The nuclear spin-dependent parity nonconserving (PNC) interaction arising from a combination of the hyperfine interaction and the coherent, spin-independent, PNC interaction from Z exchange is evaluated using many-body perturbation theory. For the 6s-7s transition in 133Cs, we obtain a result that is about 40% smaller than that found previously by Bouchiat and Piketty [Phys. Lett. B 269, 195 (1991)]. Applying this result to 133Cs, leads to an increase in the experimental value of nuclear anapole moment and exacerbates differences between constraints on PNC meson coupling constants obtained from the Cs anapole moment and those obtained from other nuclear parity violating experiments. Nuclear spin-dependent PNC dipole matrix elements, including contributions from the combined weak-hyperfine interaction, are also given for the 7s-8s transition in 211Fr and for transitions between ground-state hyperfine levels in K, Rb, Cs, Ba+, Au, Tl, Fr, and Ra+.Comment: Revtex4 preprint 19 pages 4 table

    Supersymmetric Regularization, Two-Loop QCD Amplitudes and Coupling Shifts

    Get PDF
    We present a definition of the four-dimensional helicity (FDH) regularization scheme valid for two or more loops. This scheme was previously defined and utilized at one loop. It amounts to a variation on the standard 't Hooft-Veltman scheme and is designed to be compatible with the use of helicity states for "observed" particles. It is similar to dimensional reduction in that it maintains an equal number of bosonic and fermionic states, as required for preserving supersymmetry. Supersymmetry Ward identities relate different helicity amplitudes in supersymmetric theories. As a check that the FDH scheme preserves supersymmetry, at least through two loops, we explicitly verify a number of these identities for gluon-gluon scattering (gg to gg) in supersymmetric QCD. These results also cross-check recent non-trivial two-loop calculations in ordinary QCD. Finally, we compute the two-loop shift between the FDH coupling and the standard MS-bar coupling, alpha_s. The FDH shift is identical to the one for dimensional reduction. The two-loop coupling shifts are then used to obtain the three-loop QCD beta function in the FDH and dimensional reduction schemes.Comment: 44 pages, minor corrections and clarifications include
    corecore