322 research outputs found

    Semidefinite programming formulations for the completely bounded norm of a tensor

    Get PDF
    We show that a certain tensor norm, the completely bounded norm, can be expressed by a semidefinite program. This tensor norm recently attracted attention in the field of quantum computing, where it was used by Arunachalam, Briët and Palazuelos for characterizing the quantum query complexity of Boolean functions. Combined with their results, we obtain a new characterization of the quantum query complexity through semidefinite programming. Using the duality theory of semidefinite programming we obtain a new type of certificates for large query complexity. We show that our class of certificates encompasses the linear programming certificates corresponding to the approximate degree of a Boolean function

    Lower bounds on matrix factorization ranks via noncommutative polynomial optimization

    Get PDF
    We use techniques from (tracial noncommutative) polynomial optimization to formulate hierarchies of semidefinite programming lower bounds on matrix factorization ranks. In particular, we consider the nonnegative rank, the completely positive rank, and their symmetric analogues: the positive semidefinite rank and the completely positive semidefinite rank. We study the convergence properties of our hierarchies, compare them extensively to known lower bounds, and provide some (numerical) examples

    Bounding the separable rank via polynomial optimization

    Get PDF
    We investigate questions related to the set SEPd consisting of the linear maps ρ acting on Cd⊗Cd that can be written as a convex combination of rank one matrices of the form xx∗⊗yy∗. Such maps are known in quantum information theory as the separable bipartite states, while nonseparable states are called entangled. In particular we introduce bounds for the separable rank ranksep(ρ), defined as the smallest number of rank one states xx∗⊗yy∗ entering the decomposition of a separable state ρ. Our approach relies on the moment method and yields a hierarchy of semidefinite-based lower bounds, that converges to a parameter τsep(ρ), a natural convexification of the combinatorial parameter ranksep(ρ). A distinguishing feature is exploiting the positivity constraint ρ −xx∗⊗yy∗ 0 to impose positivity of a polynomial matrix localizing map, the dual notion of the notion of sum-of-squares polynomial matrices. Our approach extends naturally to the multipartite setting and to the real separable rank, and it permits strengthening some known bounds for the completely positive rank. In addition, we indicate how the moment approach also applies to define hierarchies of semidefinite relaxations for the set SEPd and permits to give new proofs, using only tools from moment theory, for convergence results on the DPS hierarchy from Doherty et al. (2002) [16]

    La composiciĂłn tipogrĂĄfica de la PolĂ­glota

    Get PDF
    We use techniques from (tracial noncommutative) polynomial optimization to formulate hierarchies of semidefinite programming lower bounds on matrix factorization ranks. In particular, we consider the nonnegative rank, the positive semidefinite rank, and their symmetric analogs: the completely positive rank and the completely positive semidefinite rank. We study convergence properties of our hierarchies, compare them extensively to known lower bounds, and provide some (numerical) examples

    Towards coherent optical control of a single hole spin: rabi rotation of a trion conditional on the spin state of the hole

    Get PDF
    A hole spin is a potential solid-state q-bit, that may be more robust against nuclear spin induced dephasing than an electron spin. Here we propose and demonstrate the sequential preparation, control and detection of a single hole spin trapped on a self-assembled InGaAs/GaAs quantum dot. The dot is embedded in a photodiode structure under an applied electric field. Fast, triggered, initialization of a hole spin is achieved by creating a spin-polarized electron-hole pair with a picosecond laser pulse, and in an applied electric field, waiting for the electron to tunnel leaving a spin-polarized hole. Detection of the hole spin with picoseconds time resolution is achieved using a second picosecond laser pulse to probe the positive trion transition, where a trion is created conditional on the hole spin being detected as a change in photocurrent. Finally, using this setup we observe a Rabi rotation of the hole-trion transition that is conditional on the hole spin, which for a pulse area of 2 pi can be used to impart a phase shift of pi between the hole spin states, a non-general manipulation of the hole spin. (C) 2009 Elsevier Ltd. All rights reserved

    Polarized Substructural Session Types

    Full text link
    Abstract. The deep connection between session-typed concurrency and linear logic is embodied in the language SILL that integrates functional and message-passing concurrent programming. The exacting nature of linear typing provides strong guarantees, such as global progress, absence of deadlock, and race freedom, but it also requires explicit resource man-agement by the programmer. This burden is alleviated in an affine type system where resources need not be used, relying on a simple form of garbage collection. In this paper we show how to effectively support both linear and affine typing in a single language, in addition to the already present unre-stricted (intuitionistic) types. The approach, based on Benton’s adjoint construction, suggests that the usual distinction between synchronous and asynchronous communication can be viewed through the lens of modal logic. We show how polarizing the propositions into positive and negative connectives allows us to elegantly express synchronization in the type instead of encoding it by extra-logical means.

    Immune-Related Gene Expression in Two B-Complex Disparate Genetically Inbred Fayoumi Chicken Lines Following Eimeria maxima Infection

    Get PDF
    To investigate the influence of genetic differences in the MHC on susceptibility to avian coccidiosis, M5.1 and M15.2 B-haplotype-disparate Fayoumi chickens were orally infected with live Eimeria maxima oocysts, and BW gain, fecal oocyst production, and expression of 14 immune-related genes were determined as parameters of protective immunity. Weight loss was reduced and fecal parasite numbers were lower in birds of the M5.1 line compared with M15.2 line birds. Intestinal intraepithelial lymphocytes from M5.1 chickens expressed greater levels of transcripts encoding interferon-Îł (IFN-Îł), interleukin-1ÎČ (IL-1ÎČ), IL-6, IL-8, IL-12, IL-15, IL-17A, inducible nitric oxide synthase, and lipopolysaccharide-induced tumor necrosis factor-α factor and lower levels of mRNA for IFN-α, IL-10, IL-17D, NK-lysin, and tumor necrosis factor superfamily 15 compared with the M15.2 line. In the spleen, E. maxima infection was associated with greater expression levels of IFN-Îł, IL-15, and IL-8 and lower levels of IL-6, IL-17D, and IL-12 in M5.1 vs. M15.2 birds. These results suggest that genetic determinants within the chicken MHC influence resistance to E. maxima infection by controlling the local and systemic expression of immune-related cytokine and chemokine genes

    Single Electrons from Heavy Flavor Decays in p+p Collisions at sqrt(s) = 200 GeV

    Get PDF
    The invariant differential cross section for inclusive electron production in p+p collisions at sqrt(s) = 200 GeV has been measured by the PHENIX experiment at the Relativistic Heavy Ion Collider over the transverse momentum range $0.4 <= p_T <= 5.0 GeV/c at midrapidity (eta <= 0.35). The contribution to the inclusive electron spectrum from semileptonic decays of hadrons carrying heavy flavor, i.e. charm quarks or, at high p_T, bottom quarks, is determined via three independent methods. The resulting electron spectrum from heavy flavor decays is compared to recent leading and next-to-leading order perturbative QCD calculations. The total cross section of charm quark-antiquark pair production is determined as sigma_(c c^bar) = 0.92 +/- 0.15 (stat.) +- 0.54 (sys.) mb.Comment: 329 authors, 6 pages text, 3 figures. Submitted to Phys. Rev. Lett. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm
    • 

    corecore