674 research outputs found
A new route to the Mott-Hubbard metal-insulator transition: Strong correlations effects in Pr0.7 Ca0.3 MnO3
Resistive random access memory based on the resistive switching phenomenon is emerging as a strong candidate for next generation non-volatile memory. So far, the resistive switching effect has been observed in many transition metal oxides, including strongly correlated ones, such as, cuprate superconductors, colossal magnetoresistant manganites and Mott insulators. However, up to now, no clear evidence of the possible relevance of strong correlation effects in the mechanism of resistive switching has been reported. Here, we study Pr 0.7 Ca0.3 MnO3, which shows bipolar resistive switching. Performing micro-spectroscopic studies on its bare surface we are able to track the systematic electronic structure changes in both, the low and high resistance state. We find that a large change in the electronic conductance is due to field-induced oxygen vacancies, which drives a Mott metal-insulator transition at the surface. Our study demonstrates that strong correlation effects may be incorporated to the realm of the emerging oxide electronics.Fil:Rozenberg, M.J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina
Private Outsourcing of Polynomial Evaluation and Matrix Multiplication using Multilinear Maps
{\em Verifiable computation} (VC) allows a computationally weak client to
outsource the evaluation of a function on many inputs to a powerful but
untrusted server. The client invests a large amount of off-line computation and
gives an encoding of its function to the server. The server returns both an
evaluation of the function on the client's input and a proof such that the
client can verify the evaluation using substantially less effort than doing the
evaluation on its own. We consider how to privately outsource computations
using {\em privacy preserving} VC schemes whose executions reveal no
information on the client's input or function to the server. We construct VC
schemes with {\em input privacy} for univariate polynomial evaluation and
matrix multiplication and then extend them such that the {\em function privacy}
is also achieved. Our tool is the recently developed {mutilinear maps}. The
proposed VC schemes can be used in outsourcing {private information retrieval
(PIR)}.Comment: 23 pages, A preliminary version appears in the 12th International
Conference on Cryptology and Network Security (CANS 2013
The chaining lemma and its application
We present a new information-theoretic result which we call the Chaining Lemma. It considers a so-called âchainâ of random variables, defined by a source distribution X(0)with high min-entropy and a number (say, t in total) of arbitrary functions (T1,âŠ, Tt) which are applied in succession to that source to generate the chain (Formula presented). Intuitively, the Chaining Lemma guarantees that, if the chain is not too long, then either (i) the entire chain is âhighly randomâ, in that every variable has high min-entropy; or (ii) it is possible to find a point j (1 †j †t) in the chain such that, conditioned on the end of the chain i.e. (Formula presented), the preceding part (Formula presented) remains highly random. We think this is an interesting information-theoretic result which is intuitive but nevertheless requires rigorous case-analysis to prove. We believe that the above lemma will find applications in cryptography. We give an example of this, namely we show an application of the lemma to protect essentially any cryptographic scheme against memory tampering attacks. We allow several tampering requests, the tampering functions can be arbitrary, however, they must be chosen from a bounded size set of functions that is fixed a prior
Dimensional Crossover driven by Magnetic Ordering in Optical Conductivity of Pr_{1/2}Sr_{1/2}MnO_3
We investigated optical properties of Pr_{0.5}Sr_{0.5}MnO_3, which has the
A-type antiferromagnetic ordering at a low temperature. We found that T-
dependence of spectral weight transfer shows a clear correlation with the
magnetic phase transition. In comparison with the optical conductivity results
of Nd_{0.5}Sr_{0.5}MnO_3, which has the CE-type antiferromagnetic charge
ordering, we showed that optical properties of Pr_{0.5}Sr_{0.5}MnO_3 near the
Neel temperature could be explained by a crossover from 3D to 2D metals.
Details of spectral weight changes are consistent with the polaron picture.Comment: 11 pages, 4 figures, submitted to PRL at June
Toroidal mode number estimation of the edge-localized modes using the KSTAR 3-D electron cyclotron emission imaging system
A new and more accurate technique is presented for determining the toroidal mode number n of edge-localized modes (ELMs) using two independent electron cyclotron emission imaging (ECEI) systems in the Korea Superconducting Tokamak Advanced Research (KSTAR) device. The technique involves the measurement of the poloidal spacing between adjacent ELM filaments, and of the pitch angle ?? O of filaments at the plasma outboard midplane. Equilibrium reconstruction verifies that ?? O is nearly constant and thus well-defined at the midplane edge. Estimates of n obtained using two ECEI systems agree well with n measured by the conventional technique employing an array of Mirnov coils.open3
On The Mobile Behavior of Solid He at High Temperatures
We report studies of solid helium contained inside a torsional oscillator, at
temperatures between 1.07K and 1.87K. We grew single crystals inside the
oscillator using commercially pure He and He-He mixtures containing
100 ppm He. Crystals were grown at constant temperature and pressure on the
melting curve. At the end of the growth, the crystals were disordered,
following which they partially decoupled from the oscillator. The fraction of
the decoupled He mass was temperature and velocity dependent. Around 1K, the
decoupled mass fraction for crystals grown from the mixture reached a limiting
value of around 35%. In the case of crystals grown using commercially pure
He at temperatures below 1.3K, this fraction was much smaller. This
difference could possibly be associated with the roughening transition at the
solid-liquid interface.Comment: 15 pages, 6 figure
Melting of Charge/Orbital Ordered States in NdSrMnO: Temperature and Magnetic Field Dependent Optical Studies
We investigated the temperature ( 15 290 K) and the magnetic
field ( 0 17 T) dependent optical conductivity spectra of a
charge/orbital ordered manganite, NdSrMnO. With variation
of and , large spectral weight changes were observed up to 4.0 eV. These
spectral weight changes could be explained using the polaron picture.
Interestingly, our results suggested that some local ordered state might remain
above the charge ordering temperature, and that the charge/orbital melted state
at a high magnetic field (i.e. at 17 T and 4.2 K) should be a three
dimensional ferromagnetic metal. We also investigated the first order phase
transition from the charge/orbital ordered state to ferromagnetic metallic
state using the - and % -dependent dielectric constants . In
the charge/orbital ordered insulating state, was positive and
. With increasing and , was
increased up to the insulator-metal phase boundaries. And then,
abruptly changed into negative and , which was
consistent with typical responses of a metal. Through the analysis of using an effective medium approximation, we found that the melting
of charge/orbital ordered states should occur through the percolation of
ferromagnetic metal domains.Comment: submitted to Phys. Rev.
Weak Isospin Violations in Charged and Neutral Higgs Couplings from SUSY Loop Corrections
Supersymmetric QCD and supersymmetric electroweak loop corrections to the
violations of weak isospin to Yukawa couplings are investigated. Specifically
it involves an analysis of the supersymmetric loop corrections to the Higgs
couplings to the third generation quarks and leptons. Here we analyze the SUSY
loop corrections to the charged Higgs couplings which are then compared with
the supersymmetric loop corrections to the neutral Higgs couplings previously
computed. It is found that the weak isospin violations can be quite
significant, i.e, as much as 40-50% or more of the total loop correction to the
Yukawa coupling. The effects of CP phases are also studied and it is found that
these effects can either enhance or suppress the weak isospin violations. We
also investigate the weak isospin violation effects on the branching ratio
and show that the effects
are sensitive to CP phases. Thus an accurate measurement of this branching
ratio along with the branching ratio of the neutral Higgs boson decays can
provide a measure of weak isospin violation along with providing a clue to the
presence of supersymmetry.Comment: 20 pages, 9 figure
- âŠ