87 research outputs found
Theory of parity violation in compound nuclear states; one particle aspects
In this work we formulate the reaction theory of parity violation in compound
nuclear states using Feshbach's projection operator formalism. We derive in
this framework a complete set of terms that contribute to the longitudinal
asymmetry measured in experiments with polarized epithermal neutrons. We also
discuss the parity violating spreading width resulting from this formalism. We
then use the above formalism to derive expressions which hold in the case when
the doorway state approximation is introduced. In applying the theory we limit
ourselves in this work to the case when the parity violating potential and the
strong interaction are one-body. In this approximation, using as the doorway
the giant spin-dipole resonance and employing well known optical potentials and
a time-reversal even, parity odd one-body interaction we calculate or estimate
the terms we derived. In our calculations we explicitly orthogonalize the
continuum and bound wave functions. We find the effects of orthogonalization to
be very important. Our conclusion is that the present one-body theory cannot
explain the average longitudinal asymmetry found in the recent polarized
neutron experiments. We also confirm the discrepancy, first pointed out by
Auerbach and Bowman, that emerges, between the calculated average asymmetry and
the parity violating spreading width, when distant doorways are used in the
theory.Comment: 37 pages, REVTEX, 5 figures not included (Postscript, available from
the authors
Calculation of magnetic anisotropy energy in SmCo5
SmCo5 is an important hard magnetic material, due to its large magnetic
anisotropy energy (MAE). We have studied the magnetic properties of SmCo5 using
density functional theory (DFT) calculations where the Sm f-bands, which are
difficult to include in DFT calculations, have been treated within the LDA+U
formalism. The large MAE comes mostly from the Sm f-shell anisotropy, stemming
from an interplay between the crystal field and the spin-orbit coupling. We
found that both are of similar strengths, unlike some other Sm compounds,
leading to a partial quenching of the orbital moment (f-states cannot be
described as either pure lattice harmonics or pure complex harmonics), an
optimal situation for enhanced MAE. A smaller portion of the MAE can be
associated with the Co-d band anisotropy, related to the peak in the density of
states at the Fermi energy. Our result for the MAE of SmCo5, 21.6 meV/f.u.,
agrees reasonably with the experimental value of 13-16 meV/f.u., and the
calculated magnetic moment (including the orbital component) of 9.4 mu_B agrees
with the experimental value of 8.9 mu_B.Comment: Submitted to Phys. Rev.
Primordial nucleosynthesis with a varying fine structure constant: An improved estimate
We compute primordial light-element abundances for cases with fine structure
constant alpha different from the present value, including many sources of
alpha dependence neglected in previous calculations. Specifically, we consider
contributions arising from Coulomb barrier penetration, photon coupling to
nuclear currents, and the electromagnetic components of nuclear masses. We find
the primordial abundances to depend more weakly on alpha than previously
estimated, by up to a factor of 2 in the case of ^7Li. We discuss the
constraints on variations in alpha from the individual abundance measurements
and the uncertainties affecting these constraints. While the present best
measurements of primordial D/H, ^4He/H, and ^7Li/H may be reconciled pairwise
by adjusting alpha and the universal baryon density, no value of alpha allows
all three to be accommodated simultaneously without consideration of systematic
error. The combination of measured abundances with observations of acoustic
peaks in the cosmic microwave background favors no change in alpha within the
uncertainties.Comment: Phys. Rev. D accepted version; minor changes in response to refere
Immune stimuli shape the small non-coding transcriptome of extracellular vesicles released by dendritic cells
Molecular Technology and Informatics for Personalised Medicine and Healt
Immune stimuli shape the small non-coding transcriptome of extracellular vesicles released by dendritic cells
Molecular Technology and Informatics for Personalised Medicine and Healt
The Influence of an External Chromomagnetic Field on Color Superconductivity
We study the competition of quark-antiquark and diquark condensates under the
influence of an external chromomagnetic field modelling the gluon condensate
and in dependence on the chemical potential and temperature. As our results
indicate, an external chromomagnetic field might produce remarkable qualitative
changes in the picture of the color superconducting (CSC) phase formation. This
concerns, in particular, the possibility of a transition to the CSC phase and
diquark condensation at finite temperature.Comment: 27 pages, RevTex, 8 figures; the version accepted for the publication
in PRD (few references added; new numerical results added; main conclusions
are not changed
Geographical and temporal distribution of SARS-CoV-2 clades in the WHO European Region, January to June 2020
We show the distribution of SARS-CoV-2 genetic clades over time and between countries and outline potential genomic surveillance objectives. We applied three available genomic nomenclature systems for SARS-CoV-2 to all sequence data from the WHO European Region available during the COVID-19 pandemic until 10 July 2020. We highlight the importance of real-time sequencing and data dissemination in a pandemic situation. We provide a comparison of the nomenclatures and lay a foundation for future European genomic surveillance of SARS-CoV-2.Peer reviewe
Facies and sedimentary structures of the Folkestone beds (Lower Greensand, Early Cretaceous) and equivalent strata in Southern England
2 volsAvailable from British Library Document Supply Centre- DSC:DX83310 / BLDSC - British Library Document Supply CentreSIGLEGBUnited Kingdo
Systemic infection of petunia by mechanical inoculation with tomato golden mosaic virus
Aangetoond werd dat Petunia hybrida systemisch kan worden geïnfecteerd met het 'tomato golden mosaic virus' (TGMV), een virus dat behoort tot de groep van de geminivirussen. Mechanische inoculatie van petuniaplanten met TGMV gaf in de systemisch geïnfecteerde bladeren symptomen, die eerder in een aantal andere Solanaceae waren waargenomen. Daar in eerdere proeven petunia niet met TGMV kon worden geïnfecteerd en DNA-replicatie en symptoomontwikkeling wel optrad in, voor de beide genomen van het virus, transgene planten, werd gesuggereerd dat het hier een geval betrof van uitbreiding van de waardplantenreeks. De hier gepresenteerde resultaten kunnen echter tot andere conclusies leiden. Het is namelijk mogelijk, dat bepaalde F-hybriden van petunia resistenter zijn tegen het virus. Verschillen in de symptoomontwikkeling zijn echter ook niet uit te sluiten en zouden veroorzaakt kunnen worden door premunitie als gevolg van de aanwezigheid van het manteleiwit in opnieuw geïnfecteerde cellen.Peer reviewe
- …