57 research outputs found

    Quasiparticle dynamics in ferromagnetic compounds of the Co-Fe and Ni-Fe systems

    Get PDF
    We report a theoretical study of the quasiparticle lifetime and the quasiparticle mean free path caused by inelastic electron-electron scattering in ferromagnetic compounds of the Co-Fe and Ni-Fe systems. The study is based on spin-polarized calculations, which are performed within the GWGW approximation for equiatomic and Co- and Ni-rich compounds, as well as for their constituents. We mainly focus on the spin asymmetry of the quasiparticle properties, which leads to the spin-filtering effect experimentally observed in spin-dependent transport of hot electrons and holes in the systems under study. By comparing with available experimental data on the attenuation length, we estimate the contribution of the inelastic mean free path to the latter.Comment: 10 pages, 10 figure

    Quantum Interference in Superconducting Wire Networks and Josephson Junction Arrays: Analytical Approach based on Multiple-Loop Aharonov-Bohm Feynman Path-Integrals

    Get PDF
    We investigate analytically and numerically the mean-field superconducting-normal phase boundaries of two-dimensional superconducting wire networks and Josephson junction arrays immersed in a transverse magnetic field. The geometries we consider include square, honeycomb, triangular, and kagome' lattices. Our approach is based on an analytical study of multiple-loop Aharonov-Bohm effects: the quantum interference between different electron closed paths where each one of them encloses a net magnetic flux. Specifically, we compute exactly the sums of magnetic phase factors, i.e., the lattice path integrals, on all closed lattice paths of different lengths. A very large number, e.g., up to 108110^{81} for the square lattice, exact lattice path integrals are obtained. Analytic results of these lattice path integrals then enable us to obtain the resistive transition temperature as a continuous function of the field. In particular, we can analyze measurable effects on the superconducting transition temperature, Tc(B)T_c(B), as a function of the magnetic filed BB, originating from electron trajectories over loops of various lengths. In addition to systematically deriving previously observed features, and understanding the physical origin of the dips in Tc(B)T_c(B) as a result of multiple-loop quantum interference effects, we also find novel results. In particular, we explicitly derive the self-similarity in the phase diagram of square networks. Our approach allows us to analyze the complex structure present in the phase boundaries from the viewpoint of quantum interference effects due to the electron motion on the underlying lattices.Comment: 18 PRB-type pages, plus 8 large figure

    The External Genitalia Score (EGS): A European Multicenter Validation Study

    Get PDF
    CONTEXT: Standardized description of external genitalia is needed in the assessment of children with atypical genitalia. OBJECTIVES: To validate the External Genitalia Score (EGS), to present reference values for preterm and term babies up to 24 months and correlate obtained scores with anogenital distances (AGDs). DESIGN, SETTING: A European multicenter (n = 8) validation study was conducted from July 2016 to July 2018. PATIENTS AND METHODS: EGS is based on the external masculinization score but uses a gradual scale from female to male (range, 0-12) and terminology appropriate for both sexes. The reliability of EGS and AGDs was determined by the interclass correlation coefficient (ICC). Cross-sectional data were obtained in 686 term babies (0-24 months) and 181 preterm babies, and 111 babies with atypical genitalia. RESULTS: The ICC of EGS in typical and atypical genitalia is excellent and good, respectively. Median EGS (10th to 90th centile) in males < 28 weeks gestation is 10 (8.6-11.5); in males 28-32 weeks 11.5 (9.2-12); in males 33-36 weeks 11.5 (10.5-12) and in full-term males 12 (10.5-12). In all female babies, EGS is 0 (0-0). The mean (SD) lower/upper AGD ratio (AGDl/u) is 0.45 (0.1), with significant difference between AGDl/u in males 0.49 (0.1) and females 0.39 (0.1) and intermediate values in differences of sex development (DSDs) 0.43 (0.1). The AGDl/u correlates with EGS in males with typical genitalia and in atypical genitalia. CONCLUSIONS: EGS is a reliable and valid tool to describe external genitalia in premature and term babies up to 24 months. EGS correlates with AGDl/u in males. It facilitates standardized assessment, clinical decision-making and multicenter research

    Phase Behavior of Aqueous Na-K-Mg-Ca-CI-NO3 Mixtures: Isopiestic Measurements and Thermodynamic Modeling

    Get PDF
    A comprehensive model has been established for calculating thermodynamic properties of multicomponent aqueous systems containing the Na{sup +}, K{sup +}, Mg{sup 2+}, Ca{sup 2+}, Cl{sup -}, and NO{sub 3}{sup -} ions. The thermodynamic framework is based on a previously developed model for mixed-solvent electrolyte solutions. The framework has been designed to reproduce the properties of salt solutions at temperatures ranging from the freezing point to 300 C and concentrations ranging from infinite dilution to the fused salt limit. The model has been parameterized using a combination of an extensive literature database and new isopiestic measurements for thirteen salt mixtures at 140 C. The measurements have been performed using Oak Ridge National Laboratory's (ORNL) previously designed gravimetric isopiestic apparatus, which makes it possible to detect solid phase precipitation. Water activities are reported for mixtures with a fixed ratio of salts as a function of the total apparent salt mole fraction. The isopiestic measurements reported here simultaneously reflect two fundamental properties of the system, i.e., the activity of water as a function of solution concentration and the occurrence of solid-liquid transitions. The thermodynamic model accurately reproduces the new isopiestic data as well as literature data for binary, ternary and higher-order subsystems. Because of its high accuracy in calculating vapor-liquid and solid-liquid equilibria, the model is suitable for studying deliquescence behavior of multicomponent salt systems
    corecore