9 research outputs found

    TiO2-functionalized mesoporous materials for sensitive analysis of multi-phosphopeptides

    No full text
    Protein phosphorylation as one of the most important post-translational modifications in mammalian cells regulates numerous biological processes. Here we propose a novel strategy for the selective isolation and sensitive analysis of multi-phosphopeptides based on TiO2-gratfed mesoporous materials, in which MCM-41 and SBA-15 were chosen as the hard templates. The commercialized IMAC and TiO2 nanopartices were further investigated in the phosphopeptide analysis for comparison. The enrichment efficiency was evaluated and measured by MALDI-TOF mass spectrometry. The results indicated that both TiO2-SBA-15 and TiO2-MCM-41 exhibited the preferential affinity to multi-phosphopeptides compared with the other two widely used strategies. The mesoporous TiO2 based protocol showed highly selective and sensitive properties, where phosphopeptides could be identified at femtomole

    Metabolomics and Systems Biology in Saccharomyces cerevisiae

    No full text

    Prediction of functional phosphorylation sites by incorporating evolutionary information

    No full text
    corecore