23 research outputs found
Poly(vinylidene) fluoride membranes coated by heparin/collagen layer-by-layer, smart biomimetic approaches for mesenchymal stem cell culture
[EN] The use of piezoelectric materials in tissue engineering has grown considerably since inherent bone piezoelectricity was discovered. Combinations of piezoelectric polymers with magnetostrictive nanoparticles (MNP) can be used to magnetoelectrically stimulate cells by applying an external magnetic field which deforms the magnetostrictive nanoparticles in the polymer matrix, deforming the polymer itself, which varies the surface charge due to the piezoelectric effect. Poly(vinylidene) fluoride (PVDF) is the piezoelectric polymer with the largest piezoelectric coefficients, being a perfect candidate for osteogenic differentiation. As a first approach, in this paper, we propose PVDF membranes containing magnetostrictive nanoparticles and a biomimetic heparin/ collagen layer-by-layer (LbL) coating for mesenchymal stem cell culture. PVDF membranes 20% (w/v) with and without cobalt ferrite oxide (PVDF-CFO) 10% (w/w) were produced by non-solvent induced phase separation (NIPS). These membranes were found to be asymmetric, with a smooth surface, crystallinity ranging from 65% to 61%, and an electroactive beta-phase content of 51.8% and 55.6% for PVDF and PVDF-CFO, respectively. Amine groups were grafted onto the membrane surface by an alkali treatment, confirmed by ninhydrin test and X-ray photoelectron spectroscopy (XPS), providing positive charges for the assembly of heparin/collagen layers by the LbL technique. Five layers of each polyelectrolyte were deposited, ending with collagen. Human mesenchymal stem cells (hMSC) were used to test cell response in a short-term culture (1, 3 and 7 days). Nucleus cell counting showed that LbL favored cell proliferation in PVDF-CFO over non-coated membranes.This work has been funded by the Spanish State Research Agency (AEI) and the European Regional Development Fund (ERFD) through the PID2019-106099RB-C41/AEI/10.13039/501100011033 and PID2019-106099RB-C43/AEI/10.13039/501100011033 projects and the Associate Laboratory for Green Chemistry-LAQV financed by national funds from FCT/MCTES (UIDB/50006/2020). Maria GuillotFerriols acknowledges the Spanish Government funding of her doctoral thesis through a BES-2017-080398 FPI Grant. The CIBER-BBN (CB06/01/1026) initiative is funded by the VI National R&D&I Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program. CIBER actions are financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund. D.M.C is also grateful to the FCT-Fundacao para a Ciencia e Tecnologia for grant SFRH/BPD/121526/2016. Finally, the authors acknowledge funding from the Basque Government Industry and Education Department under the ELKARTEK, HAZITEK and PIBA (PIBA-2018-06) programs, respectively, also Dr. Carlos Sa (CEMUP) for assistance with the XPS analyses.Guillot-Ferriols, MT.; Rodriguez-Hernandez, J.; Correia, D.; Carabineiro, S.; Lanceros-Méndez, S.; Gómez Ribelles, JL.; Gallego Ferrer, G. (2020). Poly(vinylidene) fluoride membranes coated by heparin/collagen layer-by-layer, smart biomimetic approaches for mesenchymal stem cell culture. Materials Science and Engineering C: Materials for Biological Applications (Online). 117:1-12. https://doi.org/10.1016/j.msec.2020.111281112117Jacob, J., More, N., Kalia, K., & Kapusetti, G. (2018). Piezoelectric smart biomaterials for bone and cartilage tissue engineering. Inflammation and Regeneration, 38(1). doi:10.1186/s41232-018-0059-8Fukada, E., & Yasuda, I. (1957). On the Piezoelectric Effect of Bone. Journal of the Physical Society of Japan, 12(10), 1158-1162. doi:10.1143/jpsj.12.1158Martins, P., Lopes, A. C., & Lanceros-Mendez, S. (2014). Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications. Progress in Polymer Science, 39(4), 683-706. doi:10.1016/j.progpolymsci.2013.07.006Gregorio, R. (2006). Determination of the α, β, and γ crystalline phases of poly(vinylidene fluoride) films prepared at different conditions. Journal of Applied Polymer Science, 100(4), 3272-3279. doi:10.1002/app.23137Sencadas, V., Gregorio, R., & Lanceros-Méndez, S. (2009). α to β Phase Transformation and Microestructural Changes of PVDF Films Induced by Uniaxial Stretch. Journal of Macromolecular Science, Part B, 48(3), 514-525. doi:10.1080/00222340902837527Gregorio, R., & Borges, D. S. (2008). Effect of crystallization rate on the formation of the polymorphs of solution cast poly(vinylidene fluoride). Polymer, 49(18), 4009-4016. doi:10.1016/j.polymer.2008.07.010Sencadas, V., Gregorio Filho, R., & Lanceros-Mendez, S. (2006). Processing and characterization of a novel nonporous poly(vinilidene fluoride) films in the β phase. Journal of Non-Crystalline Solids, 352(21-22), 2226-2229. doi:10.1016/j.jnoncrysol.2006.02.052Buonomenna, M. G., Macchi, P., Davoli, M., & Drioli, E. (2007). Poly(vinylidene fluoride) membranes by phase inversion: the role the casting and coagulation conditions play in their morphology, crystalline structure and properties. European Polymer Journal, 43(4), 1557-1572. doi:10.1016/j.eurpolymj.2006.12.033Ribeiro, C., Costa, C. M., Correia, D. M., Nunes-Pereira, J., Oliveira, J., Martins, P., … Lanceros-Méndez, S. (2018). Electroactive poly(vinylidene fluoride)-based structures for advanced applications. Nature Protocols, 13(4), 681-704. doi:10.1038/nprot.2017.157Liu, F., Hashim, N. A., Liu, Y., Abed, M. R. M., & Li, K. (2011). Progress in the production and modification of PVDF membranes. Journal of Membrane Science, 375(1-2), 1-27. doi:10.1016/j.memsci.2011.03.014Abzan, N., Kharaziha, M., & Labbaf, S. (2019). Development of three-dimensional piezoelectric polyvinylidene fluoride-graphene oxide scaffold by non-solvent induced phase separation method for nerve tissue engineering. Materials & Design, 167, 107636. doi:10.1016/j.matdes.2019.107636Young, T.-H., Chang, H.-H., Lin, D.-J., & Cheng, L.-P. (2010). Surface modification of microporous PVDF membranes for neuron culture. Journal of Membrane Science, 350(1-2), 32-41. doi:10.1016/j.memsci.2009.12.009Gonçalves, R., Martins, P., Correia, D. M., Sencadas, V., Vilas, J. L., León, L. M., … Lanceros-Méndez, S. (2015). Development of magnetoelectric CoFe2O4 /poly(vinylidene fluoride) microspheres. RSC Advances, 5(45), 35852-35857. doi:10.1039/c5ra04409jFernandes, M. M., Correia, D. M., Ribeiro, C., Castro, N., Correia, V., & Lanceros-Mendez, S. (2019). Bioinspired Three-Dimensional Magnetoactive Scaffolds for Bone Tissue Engineering. ACS Applied Materials & Interfaces, 11(48), 45265-45275. doi:10.1021/acsami.9b14001Hermenegildo, B., Ribeiro, C., Pérez-Álvarez, L., Vilas, J. L., Learmonth, D. A., Sousa, R. A., … Lanceros-Méndez, S. (2019). Hydrogel-based magnetoelectric microenvironments for tissue stimulation. Colloids and Surfaces B: Biointerfaces, 181, 1041-1047. doi:10.1016/j.colsurfb.2019.06.023Gonçalves, R., Martins, P., Moya, X., Ghidini, M., Sencadas, V., Botelho, G., … Lanceros-Mendez, S. (2015). Magnetoelectric CoFe2O4/polyvinylidene fluoride electrospun nanofibres. Nanoscale, 7(17), 8058-8061. doi:10.1039/c5nr00453eSilva, J. M., Reis, R. L., & Mano, J. F. (2016). Biomimetic Extracellular Environment Based on Natural Origin Polyelectrolyte Multilayers. Small, 12(32), 4308-4342. doi:10.1002/smll.201601355Costa, R. R., & Mano, J. F. (2014). Polyelectrolyte multilayered assemblies in biomedical technologies. Chemical Society Reviews, 43(10), 3453. doi:10.1039/c3cs60393hCastilla-Casadiego, D. A., Pinzon-Herrera, L., Perez-Perez, M., Quiñones-Colón, B. A., Suleiman, D., & Almodovar, J. (2018). Simultaneous characterization of physical, chemical, and thermal properties of polymeric multilayers using infrared spectroscopic ellipsometry. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 553, 155-168. doi:10.1016/j.colsurfa.2018.05.052Mhanna, R. F., Vörös, J., & Zenobi-Wong, M. (2011). Layer-by-Layer Films Made from Extracellular Matrix Macromolecules on Silicone Substrates. Biomacromolecules, 12(3), 609-616. doi:10.1021/bm1012772Billings, P. C., & Pacifici, M. (2015). Interactions of signaling proteins, growth factors and other proteins with heparan sulfate: mechanisms and mysteries. Connective Tissue Research, 56(4), 272-280. doi:10.3109/03008207.2015.1045066Chen, J., Huang, N., Li, Q., Chu, C. H., Li, J., & Maitz, M. F. (2016). The effect of electrostatic heparin/collagen layer-by-layer coating degradation on the biocompatibility. Applied Surface Science, 362, 281-289. doi:10.1016/j.apsusc.2015.11.227Zhang, K., Huang, D., Yan, Z., & Wang, C. (2017). Heparin/collagen encapsulating nerve growth factor multilayers coated aligned PLLA nanofibrous scaffolds for nerve tissue engineering. Journal of Biomedical Materials Research Part A, 105(7), 1900-1910. doi:10.1002/jbm.a.36053Ferreira, A. M., Gentile, P., Toumpaniari, S., Ciardelli, G., & Birch, M. A. (2016). Impact of Collagen/Heparin Multilayers for Regulating Bone Cellular Functions. ACS Applied Materials & Interfaces, 8(44), 29923-29932. doi:10.1021/acsami.6b09241Castilla-Casadiego, D. A., García, J. R., García, A. J., & Almodovar, J. (2019). Heparin/Collagen Coatings Improve Human Mesenchymal Stromal Cell Response to Interferon Gamma. ACS Biomaterials Science & Engineering, 5(6), 2793-2803. doi:10.1021/acsbiomaterials.9b00008Martins, P., Gonçalves, R., Lanceros-Mendez, S., Lasheras, A., Gutiérrez, J., & Barandiarán, J. M. (2014). Effect of filler dispersion and dispersion method on the piezoelectric and magnetoelectric response of CoFe2O4/P(VDF-TrFE) nanocomposites. Applied Surface Science, 313, 215-219. doi:10.1016/j.apsusc.2014.05.187Gamboa-Martínez, T. C., Luque-Guillén, V., González-García, C., Gómez Ribelles, J. L., & Gallego-Ferrer, G. (2014). Crosslinked fibrin gels for tissue engineering: Two approaches to improve their properties. Journal of Biomedical Materials Research Part A, 103(2), 614-621. doi:10.1002/jbm.a.35210Gregorio, Jr., R., & Cestari, M. (1994). Effect of crystallization temperature on the crystalline phase content and morphology of poly(vinylidene fluoride). Journal of Polymer Science Part B: Polymer Physics, 32(5), 859-870. doi:10.1002/polb.1994.090320509Martins, P., Costa, C. M., & Lanceros-Mendez, S. (2010). Nucleation of electroactive β-phase poly(vinilidene fluoride) with CoFe2O4 and NiFe2O4 nanofillers: a new method for the preparation of multiferroic nanocomposites. Applied Physics A, 103(1), 233-237. doi:10.1007/s00339-010-6003-7Qi, L., Knapton, E. K., Zhang, X., Zhang, T., Gu, C., & Zhao, Y. (2017). Pre-culture Sudan Black B treatment suppresses autofluorescence signals emitted from polymer tissue scaffolds. Scientific Reports, 7(1). doi:10.1038/s41598-017-08723-2Young, T.-H., Cheng, L.-P., Lin, D.-J., Fane, L., & Chuang, W.-Y. (1999). Mechanisms of PVDF membrane formation by immersion-precipitation in soft (1-octanol) and harsh (water) nonsolvents. Polymer, 40(19), 5315-5323. doi:10.1016/s0032-3861(98)00747-2Cheng, L.-P. (1999). Effect of Temperature on the Formation of Microporous PVDF Membranes by Precipitation from 1-Octanol/DMF/PVDF and Water/DMF/PVDF Systems. Macromolecules, 32(20), 6668-6674. doi:10.1021/ma990418lSupriya, S., Kumar, L., & Kar, M. (2018). Optimization of dielectric properties of PVDF-CFO nanocomposites. Polymer Composites, 40(3), 1239-1250. doi:10.1002/pc.24840Lin, D.-J., Beltsios, K., Young, T.-H., Jeng, Y.-S., & Cheng, L.-P. (2006). Strong effect of precursor preparation on the morphology of semicrystalline phase inversion poly(vinylidene fluoride) membranes. Journal of Membrane Science, 274(1-2), 64-72. doi:10.1016/j.memsci.2005.07.043Cai, X., Lei, T., Sun, D., & Lin, L. (2017). A critical analysis of the α, β and γ phases in poly(vinylidene fluoride) using FTIR. RSC Advances, 7(25), 15382-15389. doi:10.1039/c7ra01267eBoccaccio, T., Bottino, A., Capannelli, G., & Piaggio, P. (2002). Characterization of PVDF membranes by vibrational spectroscopy. Journal of Membrane Science, 210(2), 315-329. doi:10.1016/s0376-7388(02)00407-6Liu, J., Lu, X., & Wu, C. (2013). Effect of Preparation Methods on Crystallization Behavior and Tensile Strength of Poly(vinylidene fluoride) Membranes. Membranes, 3(4), 389-405. doi:10.3390/membranes3040389ZHANG, M., ZHANG, A., ZHU, B., DU, C., & XU, Y. (2008). Polymorphism in porous poly(vinylidene fluoride) membranes formed via immersion precipitation process. Journal of Membrane Science, 319(1-2), 169-175. doi:10.1016/j.memsci.2008.03.029Xiao, L., Davenport, D. M., Ormsbee, L., & Bhattacharyya, D. (2015). Polymerization and Functionalization of Membrane Pores for Water Related Applications. Industrial & Engineering Chemistry Research, 54(16), 4174-4182. doi:10.1021/ie504149tDuca, M. D., Plosceanu, C. L., & Pop, T. (1998). Effect of X-rays on poly(vinylidene fluoride) in X-ray photoelectron spectroscopy. Journal of Applied Polymer Science, 67(13), 2125-2129. doi:10.1002/(sici)1097-4628(19980328)67:133.0.co;2-gCorreia, D. M., Ribeiro, C., Sencadas, V., Botelho, G., Carabineiro, S. A. C., Ribelles, J. L. G., & Lanceros-Méndez, S. (2015). Influence of oxygen plasma treatment parameters on poly(vinylidene fluoride) electrospun fiber mats wettability. Progress in Organic Coatings, 85, 151-158. doi:10.1016/j.porgcoat.2015.03.019Kehrer, M., Duchoslav, J., Hinterreiter, A., Cobet, M., Mehic, A., Stehrer, T., & Stifter, D. (2019). XPS investigation on the reactivity of surface imine groups with TFAA. Plasma Processes and Polymers, 16(4), 1800160. doi:10.1002/ppap.201800160Morales-Román, R. M., Guillot-Ferriols, M., Roig-Pérez, L., Lanceros-Mendez, S., Gallego-Ferrer, G., & Gómez Ribelles, J. L. (2019). Freeze-extraction microporous electroactive supports for cell culture. European Polymer Journal, 119, 531-540. doi:10.1016/j.eurpolymj.2019.07.011Camacho, N. P., West, P., Torzilli, P. A., & Mendelsohn, R. (2000). FTIR microscopic imaging of collagen and proteoglycan in bovine cartilage. Biopolymers, 62(1), 1-8. doi:10.1002/1097-0282(2001)62:13.0.co;2-oRibeiro, C., Panadero, J. A., Sencadas, V., Lanceros-Méndez, S., Tamaño, M. N., Moratal, D., … Gómez Ribelles, J. L. (2012). Fibronectin adsorption and cell response on electroactive poly(vinylidene fluoride) films. Biomedical Materials, 7(3), 035004. doi:10.1088/1748-6041/7/3/035004Ribeiro, C., Pärssinen, J., Sencadas, V., Correia, V., Miettinen, S., Hytönen, V. P., & Lanceros‐Méndez, S. (2014). Dynamic piezoelectric stimulation enhances osteogenic differentiation of human adipose stem cells. Journal of Biomedical Materials Research Part A, 103(6), 2172-2175. doi:10.1002/jbm.a.35368Sobreiro-Almeida, R., Tamaño-Machiavello, M., Carvalho, E., Cordón, L., Doria, S., Senent, L., … Sempere, A. (2017). Human Mesenchymal Stem Cells Growth and Osteogenic Differentiation on Piezoelectric Poly(vinylidene fluoride) Microsphere Substrates. International Journal of Molecular Sciences, 18(11), 2391. doi:10.3390/ijms18112391Moise, S., Céspedes, E., Soukup, D., Byrne, J. M., El Haj, A. J., & Telling, N. D. (2017). The cellular magnetic response and biocompatibility of biogenic zinc- and cobalt-doped magnetite nanoparticles. Scientific Reports, 7(1). doi:10.1038/srep3992
Gold nanoparticles deposited on surface modified carbon materials as reusable catalysts for hydrocarboxylation of cyclohexane
Gold nanoparticles were deposited on different carbon materials and used as catalysts for the alkane hydrocarboxylation reaction. Cyclohexane hydrocarboxylation to cyclohexanecarboxylic acid was carried out in the presence of CO and water, peroxodisulfate, in water/acetonitrile medium, at ca. 50 degrees C, with gold nanoparticles deposited by a colloidal method on carbon nanotubes and activated carbon with three different surface chemistries: in their original forms (CNT or AC, respectively), oxidized with HNO3 (ox) or oxidized with HNO3 and subsequently treated with NaOH (-ox-Na). Au/CNT-ox-Na was the best catalyst, yielding cyclohexanecarboxylic acid up to 88.2% yield, with excellent recyclability (97.5% of the initial activity was maintained after five consecutive catalytic cycles).info:eu-repo/semantics/publishedVersio
Facet-dependent reactivity of Fe2O3/CeO2 nanocomposites: Effect of ceria morphology on CO oxidation
Ceria has been widely studied either as catalyst itself or support of various active phases in many catalytic reactions, due to its unique redox and surface properties in conjunction to its lower cost, compared to noble metal-based catalytic systems. The rational design of catalytic materials, through appropriate tailoring of the particles’ shape and size, in order to acquire highly efficient nanocatalysts, is of major significance. Iron is considered to be one of the cheapest transition metals while its interaction with ceria support and their shape-dependent catalytic activity has not been fully investigated. In this work, we report on ceria nanostructures morphological effects (cubes, polyhedra, rods) on the textural, structural, surface, redox properties and, consequently, on the CO oxidation performance of the iron-ceria mixed oxides (Fe2O3/CeO2). A full characterization study involving N2 adsorption at -196 °C, X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), temperature programmed reduction (TPR), and X-ray photoelectron spectroscopy (XPS) was performed. The results clearly revealed the key role of support morphology on the physicochemical properties and the catalytic behavior of the iron-ceria binary system, with the rod-shaped sample exhibiting the highest catalytic performance, both in terms of conversion and specific activity, due to its improved reducibility and oxygen mobility, along with its abundance in Fe2+ species. © 2019 by the authors. Licensee MDPI, Basel, Switzerland
Oxido-and dioxido-vanadium(V) complexes supported on carbon materials: Reusable catalysts for the oxidation of cyclohexane
Oxidovanadium(V) and dioxidovanadium(V) compounds, [VO(OEt)L] (1) and [Et3NH][VO2L] (2), were synthesized using an aroylhydrazone Schiff base (5-bromo-2-hydroxybenzylidene)-2-hydroxybenzohydrazide (H2L). They were characterized by elemental analysis, Fourier-transform infrared spectroscopy (FT-IR), (1H and51V) nuclear magnetic resonance (NMR), electrospray ioniza-tion mass spectrometry (ESI-MS) and single crystal X-ray diffraction analyses. Both complexes were immobilized on functionalized carbon nanotubes and activated carbon. The catalytic performances of 1 and 2, homogenous and anchored on the supports, were evaluated for the first time towards the MW-assisted peroxidative oxidation (with tert-butylhydroperoxide, TBHP) of cyclohexane under heterogeneous conditions. The immobilization of 1 and 2 on functionalized carbon materials improved the efficiency of catalytic oxidation and allowed the catalyst recyclability with a well-preserved catalytic activity. © 2021 by the authors. Licensee MDPI, Basel, Switzerland
Synthesis of a novel series of Cu(I) complexes bearing alkylated 1,3,5-triaza-7-phosphaadamantane as homogeneous and carbon-supported catalysts for the synthesis of 1-and 2-substituted-1,2,3-triazoles
The N-alkylation of 1,3,5-triaza-7-phosphaadamantane (PTA) with ortho-, meta-and para-substituted nitrobenzyl bromide under mild conditions afforded three hydrophilic PTA ammonium salts, which were used to obtain a new set of seven water-soluble copper(I) complexes. The new compounds were fully characterized and their catalytic activity was investigated for the low power microwave assisted one-pot azide–alkyne cycloaddition reaction in homogeneous aqueous medium to obtain disubstituted 1,2,3-triazoles. The most active catalysts were immobilized on activated carbon (AC), multi-walled carbon nanotubes (CNT), as well as surface functionalized AC and CNT, with the most efficient support being the CNT treated with nitric acid and NaOH. In the presence of the immobilized catalyst, several 1,4-disubstituted-1,2,3-triazoles were obtained from the reaction of terminal alkynes, organic halides and sodium azide in moderate yields up to 80%. Furthermore, the catalyzed reaction of terminal alkynes, formaldehyde and sodium azide afforded 2-hydroxymethyl-2H-1,2,3-triazoles in high yields up to 99%. The immobilized catalyst can be recovered and recycled through simple workup steps and reused up to five consecutive cycles without a marked loss in activity. The described catalytic systems proceed with a broad substrate scope, under microwave irradiation in aqueous medium and according to “click rules”. © 2021 by the authors. Licensee MDPI, Basel, Switzerland
ΕΠΙΔΡΑΣΗ ΤΗΣ ΜΟΡΦΟΛΟΓΙΑΣ ΤΟΥ ΦΟΡΕΑ (ΝΑΝΟ-CeO2) ΣΤΑ ΦΥΣΙΚΟΧΗΜΙΚΑ ΚΑΙ ΚΑΤΑΛΥΤΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΥΠΟΣΤΗΡΙΓΜΕΝΩΝ ΜΕΤΑΛΛΩΝ ΜΕΤΑΠΤΩΣΗΣ MΟx/CeO2 (M: Ni, Co, Fe)
Το οξείδιο του δημητρίου ή δημητρία (CeO2) έχει προσελκύσει ιδιαίτερο ερευνητικό ενδιαφέρον κι έχει χρησιμοποιηθεί σε πλήθος καταλυτικών αντιδράσεων λόγω των μοναδικών οξειδοαναγωγικών του ιδιοτήτων. Ειδικότερα, η σύνθεση υλικών δημητρίας σε επίπεδο νανο-κλίμακας καθορισμένης αρχιτεκτονικής και μορφολογίας μπορεί να οδηγήσει σε σημαντικές μεταβολές στις δομικές, επιφανειακές και οξειδοαναγωγικές ιδιότητες. Επιπλέον, ιδιαίτερα σημαντική κρίνεται η ανάπτυξη μικτών οξειδίων βασισμένων στο CeO2, τα οποία θα χαρακτηρίζονται από υψηλή δραστικότητα και χαμηλό κόστος και τα οποία θα είναι απαλλαγμένα από ευγενή μέταλλα. Στην παρούσα εργασία μελετήθηκε η επίδραση της νανο-δομής του φορέα CeO2 στα φυσικοχημικά χαρακτηριστικά και την καταλυτική συμπεριφορά υποστηριγμένων μετάλλων μετάπτωσης, ήτοι MOx/CeO2 (M: Ni, Co, Fe). Ως φορέας χρησιμοποιήθηκε σε όλες τις περιπτώσεις νανο-CeO2 διαφορετικής μορφολογίας, η οποία παρασκευάστηκε με την υδροθερμική μέθοδο. Ο χαρακτηρισμός των υλικών πραγματοποιήθηκε μέσω των τεχνικών BET, XRD, TEM, TPR, ενώ η καταλυτική τους συμπεριφορά μελετήθηκε κατά την αντίδραση οξείδωσης του CO