39 research outputs found
Weak antilocalization in a strained InGaAs/InP quantum well structure
Weak antilocalization (WAL) effect due to the interference corrections to the
conductivity has been studied experimentally in a strained InGaAs/InP quantum
well structure. From measurements in tilted magnetic filed, it was shown that
both weak localization and WAL features depend only on the normal component of
the magnetic field for tilt angles less than 84 degrees. Weak antilocalization
effect showed non-monotonous dependence on the gate voltage which could not be
explained by either Rashba or Dresselhouse mechanisms of the spin-orbit
coupling. To describe magnetic field dependence of the conductivity, it was
necessary to assume that spin-orbit scattering time depends on the external
magnetic field which quenches the spin precession around effective, spin-orbit
related, magnetic fields.Comment: Presented at EP2DS 2003 (Nara), to be published in Physica
The microwave induced resistance response of a high mobility 2DEG from the quasi-classical limit to the quantum Hall regime
Microwave induced resistance oscillations (MIROs) were studied experimentally
over a very wide range of frequencies ranging from ~20 GHz up to ~4 THz, and
from the quasi-classical regime to the quantum Hall effect regime. At low
frequencies regular MIROs were observed, with a periodicity determined by the
ratio of the microwave to cyclotron frequencies. For frequencies below 150 GHz
the magnetic field dependence of MIROs waveform is well described by a
simplified version of an existing theoretical model, where the damping is
controlled by the width of the Landau levels. In the THz frequency range MIROs
vanish and only pronounced resistance changes are observed at the cyclotron
resonance. The evolution of MIROs with frequency are presented and discussed.Comment: 4 pages, presented at EP2DS, to be published in Physica
Time Resolved Control of Electron Tunnelling Times and Single-shot Spin Readout in a Quantum Dot
We are pursuing a capability to perform time resolved manipulations of single
spins in quantum dot circuits involving more than two quantum dots. In this
paper, we demonstrate full counting statistics as well as averaging techniques
we use to calibrate the tunnel barriers. We make use of this to implement the
Delft protocol for single shot single spin readout in a device designed to form
a triple quantum dot potential. We are able to tune the tunnelling times over
around three orders of magnitude. We obtain a spin relaxation time of 300
microseconds at 10T.Comment: Submitted to EP2DS 2009 Conference Proceeding
Microwave radiation induced magneto-oscillations in the longitudinal and transverse resistance of a two dimensional electron gas
We confirm the existance of magneto-resistance oscillations in a
microwave-irradiated two-dimensional electron gas, first reported in a series
of papers by Zhudov et al. and Mani et al. In our experiments, on a sample with
a more moderate mobility, the microwave induced oscillations are observed not
only in the longitudinal - but also in the transverse-resistance (Hall
resistance). The phase of the oscillations is such that the decrease (increase)
in the longitudinal resistance is accompanied by an increase (decrease) in the
absolute value of the Hall resistance. We believe that these new results
provide valuable new information to better understand the origin of this
interesting phenomenon.Comment: Accepted for publication in journal of Solid State Comunication
Electron transport in gated InGaAs and InAsP quantum well wires in selectively-grown InP ridge structures
The purpose of this work is to fabricate ribbon-like InGaAs and InAsP wires
embedded in InP ridge structures and investigate their transport properties.
The InP ridge structures that contain the wires are selectively grown by
chemical beam epitaxy (CBE) on pre-patterned InP substrates. To optimize the
growth and micro-fabrication processes for electronic transport, we explore the
Ohmic contact resistance, the electron density, and the mobility as a function
of the wire width using standard transport and Shubnikov-de Haas measurements.
At low temperatures the ridge structures reveal reproducible mesoscopic
conductance fluctuations. We also fabricate ridge structures with submicron
gate electrodes that exhibit non-leaky gating and good pinch-off
characteristics acceptable for device operation. Using such wrap gate
electrodes, we demonstrate that the wires can be split to form quantum dots
evidenced by Coulomb blockade oscillations in transport measurements.Comment: 5 pages, 4 figures, additional references and improved Fig. 4c,
MSS-14 conference, submitted to Physica
Experimental study of weak antilocalization effect in a high mobility InGaAs/InP quantum well
The magnetoresistance associated with quantum interference corrections in a
high mobility, gated InGaAs/InP quantum well structure is studied as a function
of temperature, gate voltage, and angle of the tilted magnetic field.
Particular attention is paid to the experimental extraction of phase-breaking
and spin-orbit scattering times when weak anti- localization effects are
prominent. Compared with metals and low mobility semiconductors the
characteristic magnetic field in high mobility
samples is very small and the experimental dependencies of the interference
effects extend to fields several hundreds of times larger. Fitting experimental
results under these conditions therefore requires theories valid for arbitrary
magnetic field. It was found, however, that such a theory was unable to fit the
experimental data without introducing an extra, empirical, scale factor of
about 2. Measurements in tilted magnetic fields and as a function of
temperature established that both the weak localization and the weak
anti-localization effects have the same, orbital origin. Fits to the data
confirmed that the width of the low field feature, whether a weak localization
or a weak anti-localization peak, is determined by the phase-breaking time and
also established that the universal (negative) magnetoresistance observed in
the high field limit is associated with a temperature independent spin-orbit
scattering time.Comment: 13 pages including 10 figure
Persistent spin splitting of a two-dimensional electron gas in tilted magnetic fields
By varying the orientation of the applied magnetic field with respect to the
normal of a two-dimensional electron gas, the chemical potential and the
specific heat reveal persistent spin splitting in all field ranges. The
corresponding shape of the thermodynamic quantities distinguishes whether the
Rashba spin-orbit interaction RSOI, the Zeeman term or both dominate the
splitting. The interplay of the tilting of the magnetic field and RSOI resulted
to an amplified splitting in weak fields. The effects of changing the RSOI
strength and the Landau level broadening are also investigated.Comment: 10 pages, 5 figure
Two-subband electron transport in nonideal quantum wells
Electron transport in nonideal quantum wells (QW) with large-scale variations
of energy levels is studied when two subbands are occupied. Although the mean
fluctuations of these two levels are screened by the in-plane redistribution of
electrons, the energies of both levels remain nonuniform over the plane. The
effect of random inhomogeneities on the classical transport is studied within
the framework of a local response approach for weak disorder. Both short-range
and small-angle scattering mechanisms are considered. Magnetotransport
characteristics and the modulation of the effective conductivity by transverse
voltage are evaluated for different kinds of confinement potentials (hard wall
QW, parabolic QW, and stepped QW).Comment: 10 pages, 6 figure
Morphologies of Sol–Gel Derived Thin Films of ZnO Using Different Precursor Materials and their Nanostructures
We have shown that the morphological features of the sol–gel derived thin films of ZnO depend strongly on the choice of the precursor materials. In particular, we have used zinc nitrate and zinc acetate as the precursor materials. While the films using zinc acetate showed a smoother topography, those prepared by using zinc nitrate exhibited dendritic character. Both types of films were found to be crystalline in nature. The crystallite dimensions were confined to the nanoscale. The crystallite size of the nanograins in the zinc nitrate derived films has been found to be smaller than the films grown by using zinc acetate as the precursor material. Selected area electron diffraction patterns in the case of both the precursor material has shown the presence of different rings corresponding to different planes of hexagonal ZnO crystal structure. The results have been discussed in terms of the fundamental considerations and basic chemistry governing the growth kinetics of these sol–gel derived ZnO films with both the precursor materials
Effects of biased and unbiased illuminations on two-dimensional electron gases in dopant-free GaAs/AlGaAs
Illumination is performed at low temperature on dopant-free two-dimensional electron gases (2DEGs) of varying depths, under unbiased (gates grounded) and biased (gates at a positive or negative voltage) conditions. Unbiased illuminations in 2DEGs located more than 70 nm away from the surface result in a gain in mobility at a given electron density, primarily driven by the reduction of background impurities. In 2DEGs closer to the surface, unbiased illuminations result in a mobility loss, driven by an increase in surface charge density. Biased illuminations performed with positive applied gate voltages result in a mobility gain, whereas those performed with negative applied voltages result in a mobility loss. The magnitude of the mobility gain (loss) weakens with 2DEG depth, and is likely driven by a reduction (increase) in surface charge density. Remarkably, this mobility gain/loss is fully reversible by performing another biased illumination with the appropriate gate voltage, provided both Formula Presented-type and Formula Presented-type Ohmic contacts are present. Experimental results are modeled with Boltzmann transport theory, and possible mechanisms are discussed