20 research outputs found

    The Accidental Terrorist: Okhrana Connections to the Extreme-Right and the Attempt to Assassinate Sergei Witte in 1907

    Get PDF
    This article represents a case study in the relationship between the tsarist secret police (commonly known as the Okhrana in the West and okhranka in Russia) and acts of political terror perpetrated by the extreme-right in late imperial Russia. This specific case concerns the tangled web of conspiracy, propaganda and controversy that surrounded the attempted assassination of former-Chairman of the Council of Ministers, Sergei Witte, in 1907

    Triangle Singularity as the Origin of the a1(1420)

    No full text
    International audienceThe COMPASS Collaboration experiment recently discovered a new isovector resonancelike signal with axial-vector quantum numbers, the a1(1420), decaying to f0(980)π. With a mass too close to and a width smaller than the axial-vector ground state a1(1260), it was immediately interpreted as a new light exotic meson, similar to the X, Y, Z states in the hidden-charm sector. We show that a resonancelike signal fully matching the experimental data is produced by the decay of the a1(1260) resonance into K*(→Kπ)K¯ and subsequent rescattering through a triangle singularity into the coupled f0(980)π channel. The amplitude for this process is calculated using a new approach based on dispersion relations. The triangle-singularity model is fitted to the partial-wave data of the COMPASS experiment. Despite having fewer parameters, this fit shows a slightly better quality than the one using a resonance hypothesis and thus eliminates the need for an additional resonance in order to describe the data. We thereby demonstrate for the first time in the light-meson sector that a resonancelike structure in the experimental data can be described by rescattering through a triangle singularity, providing evidence for a genuine three-body effect

    Spin density matrix elements in exclusive ρ0\rho ^0 meson muoproduction

    No full text
    We report on a measurement of Spin Density Matrix Elements (SDMEs) in hard exclusive ρ0\rho ^0 meson muoproduction at COMPASS using 160~GeV/cc polarised μ+ \mu ^{+} and μ \mu ^{-} beams impinging on a liquid hydrogen target. The measurement covers the kinematic range 5.0~GeV/c2c^2 <W<< W < 17.0~GeV/c2c^2, 1.0 (GeV/cc)2^2 <Q2<< Q^2 < 10.0 (GeV/cc)2^2 and 0.01 (GeV/cc)2^2 <pT2<< p_{\rm{T}}^2 < 0.5 (GeV/cc)2^2. Here, WW denotes the mass of the final hadronic system, Q2Q^2 the virtuality of the exchanged photon, and pTp_{\rm{T}} the transverse momentum of the ρ0\rho ^0 meson with respect to the virtual-photon direction. The measured non-zero SDMEs for the transitions of transversely polarised virtual photons to longitudinally polarised vector mesons (γTVL\gamma^*_T \to V^{ }_L) indicate a violation of ss-channel helicity conservation. Additionally, we observe a dominant contribution of natural-parity-exchange transitions and a very small contribution of unnatural-parity-exchange transitions, which is compatible with zero within experimental uncertainties. The results provide important input for modelling Generalised Parton Distributions (GPDs). In particular, they may allow one to evaluate in a model-dependent way the role of parton helicity-flip GPDs in exclusive ρ0\rho ^0 production.We report on a measurement of Spin Density Matrix Elements (SDMEs) in hard exclusive ρ0\rho ^0 meson muoproduction at COMPASS using 160 GeV/c polarised μ+ \mu ^{+} and μ \mu ^{-} beams impinging on a liquid hydrogen target. The measurement covers the kinematic range 5.0 GeV/c2<W<c^2< W< 17.0 GeV/c2c^2, 1.0 (GeV/c)2<Q2<^2< Q^2< 10.0 (GeV/c)2^2 and 0.01 (GeV/c)2<pT2<^2< p_{\textrm{T}}^2< 0.5 (GeV/c)2^2. Here, W denotes the mass of the final hadronic system, Q2Q^2 the virtuality of the exchanged photon, and pTp_{\textrm{T}} the transverse momentum of the ρ0\rho ^0 meson with respect to the virtual-photon direction. The measured non-zero SDMEs for the transitions of transversely polarised virtual photons to longitudinally polarised vector mesons (γTVL\gamma ^*_T \rightarrow V^{ }_L) indicate a violation of s-channel helicity conservation. Additionally, we observe a dominant contribution of natural-parity-exchange transitions and a very small contribution of unnatural-parity-exchange transitions, which is compatible with zero within experimental uncertainties. The results provide important input for modelling Generalised Parton Distributions (GPDs). In particular, they may allow one to evaluate in a model-dependent way the role of parton helicity-flip GPDs in exclusive ρ0\rho ^0 production.We report on a measurement of Spin Density Matrix Elements (SDMEs) in hard exclusive ρ0\rho ^0 meson muoproduction at COMPASS using 160~GeV/cc polarised μ+ \mu ^{+} and μ \mu ^{-} beams impinging on a liquid hydrogen target. The measurement covers the kinematic range 5.0~GeV/c2c^2<W<< W < 17.0~GeV/c2c^2, 1.0 (GeV/cc)2^2<Q2<< Q^2 < 10.0 (GeV/cc)2^2 and 0.01 (GeV/cc)2^2<pT2<< p_{\rm{T}}^2 < 0.5 (GeV/cc)2^2. Here, WW denotes the mass of the final hadronic system, Q2Q^2 the virtuality of the exchanged photon, and pTp_{\rm{T}} the transverse momentum of the ρ0\rho ^0 meson with respect to the virtual-photon direction. The measured non-zero SDMEs for the transitions of transversely polarised virtual photons to longitudinally polarised vector mesons (γTVL\gamma^*_T \to V^{ }_L) indicate a violation of ss-channel helicity conservation. Additionally, we observe a dominant contribution of natural-parity-exchange transitions and a very small contribution of unnatural-parity-exchange transitions, which is compatible with zero within experimental uncertainties. The results provide important input for modelling Generalised Parton Distributions (GPDs). In particular, they may allow one to evaluate in a model-dependent way the role of parton helicity-flip GPDs in exclusive ρ0\rho ^0 production

    Exotic meson π1(1600)\pi_1(1600) with JPC=1+J^{PC} = 1^{-+} and its decay into ρ(770)π\rho(770)\pi

    No full text
    International audienceWe study the spin-exotic JPC=1-+ amplitude in single-diffractive dissociation of 190  GeV/c pions into π-π-π+ using a hydrogen target and confirm the π1(1600)→ρ(770)π amplitude, which interferes with a nonresonant 1-+ amplitude. We demonstrate that conflicting conclusions from previous studies on these amplitudes can be attributed to different analysis models and different treatment of the dependence of the amplitudes on the squared four-momentum transfer and we thus reconcile these experimental findings. We study the nonresonant contributions to the π-π-π+ final state using pseudodata generated on the basis of a Deck model. Subjecting pseudodata and real data to the same partial-wave analysis, we find good agreement concerning the spectral shape and its dependence on the squared four-momentum transfer for the JPC=1-+ amplitude and also for amplitudes with other JPC quantum numbers. We investigate for the first time the amplitude of the π-π+ subsystem with JPC=1-- in the 3π amplitude with JPC=1-+ employing the novel freed-isobar analysis scheme. We reveal this π-π+ amplitude to be dominated by the ρ(770) for both the π1(1600) and the nonresonant contribution. These findings largely confirm the underlying assumptions for the isobar model used in all previous partial-wave analyses addressing the JPC=1-+ amplitude
    corecore