40,888 research outputs found
Relevance of inter-composite fermion interaction to the edge Tomonaga-Luttinger liquid
It is shown that Wen's effective theory correctly describes the
Tomonaga-Luttinger liquid at the edge of a system of non-interacting composite
fermions. However, the weak residual interaction between composite fermions
appears to be a relevant perturbation. The filling factor dependence of the
Tomonaga-Luttinger parameter is estimated for interacting composite fermions in
a microscopic approach and satisfactory agreement with experiment is achieved.
It is suggested that the electron field operator may not have a simple
representation in the effective one dimensional theory.Comment: 5 pages; accepted in Phys. Rev. Let
Two-dimensional electron system in high magnetic fields: Wigner crystal vs. composite-fermion liquid
The two dimensional system of electrons in a high magnetic field offers an
opportunity to investigate a phase transition from a quantum liquid into a
Wigner solid. Recent experiments have revealed an incipient composite fermion
liquid in a parameter range where theory and many experiments had previously
suggested the Wigner crystal phase, thus calling into question our current
understanding. This Letter shows how very small quantitative corrections (< 1%)
in the energy due to the weak interaction between composite fermions can cause
a fundamental change in the nature of the ground state, thus providing insight
into the puzzling experimental results.Comment: 4 pages, 2 figure
A flat space-time model of the Universe
We propose a model of the Universe based on Minkowski flat space-time metric.
In this model the space-time does not evolve. Instead the matter evolves such
that all the mass parameters increase with time. We construct a model based on
unimodular gravity to show how this can be accomplished within the framework of
flat space-time. We show that the model predicts the Hubble law if the masses
increase with time. Furthermore we show that it fits the high z supernova data
in a manner almost identical to the standard Big Bang model. Furthermore we
show that at early times the Universe is dominated by radiative energy density.
The phenomenon of recombination also arises in our model and hence predicts the
existence of CMBR. However a major difference with the standard Big Bang is
that the radiative temperature and energy density does not evolve in our model.
Furthermore we argue that the basic motivation for inflation is absent in our
model.Comment: 11 pages, no figures, changes in presentatio
A Simple Method for Computing the Non-Linear Mass Correlation Function with Implications for Stable Clustering
We propose a simple and accurate method for computing analytically the mass
correlation function for cold dark matter and scale-free models that fits
N-body simulations over a range that extends from the linear to the strongly
non-linear regime. The method, based on the dynamical evolution of the pair
conservation equation, relies on a universal relation between the pair-wise
velocity and the smoothed correlation function valid for high and low density
models, as derived empirically from N-body simulations. An intriguing
alternative relation, based on the stable-clustering hypothesis, predicts a
power-law behavior of the mass correlation function that disagrees with N-body
simulations but conforms well to the observed galaxy correlation function if
negligible bias is assumed. The method is a useful tool for rapidly exploring a
wide span of models and, at the same time, raises new questions about large
scale structure formation.Comment: 10 pages, 3 figure
Nonuniversal exponents in sandpiles with stochastic particle number transfer
We study fixed density sandpiles in which the number of particles transferred
to a neighbor on relaxing an active site is determined stochastically by a
parameter . Using an argument, the critical density at which an
active-absorbing transition occurs is found exactly. We study the critical
behavior numerically and find that the exponents associated with both static
and time-dependent quantities vary continuously with .Comment: Some parts rewritten, results unchanged. To appear in Europhys. Let
Activation gaps for the fractional quantum Hall effect: realistic treatment of transverse thickness
The activation gaps for fractional quantum Hall states at filling fractions
are computed for heterojunction, square quantum well, as well as
parabolic quantum well geometries, using an interaction potential calculated
from a self-consistent electronic structure calculation in the local density
approximation. The finite thickness is estimated to make 30% correction
to the gap in the heterojunction geometry for typical parameters, which
accounts for roughly half of the discrepancy between the experiment and
theoretical gaps computed for a pure two dimensional system. Certain model
interactions are also considered. It is found that the activation energies
behave qualitatively differently depending on whether the interaction is of
longer or shorter range than the Coulomb interaction; there are indications
that fractional Hall states close to the Fermi sea are destabilized for the
latter.Comment: 32 pages, 13 figure
Adaptation dynamics of the quasispecies model
We study the adaptation dynamics of an initially maladapted population
evolving via the elementary processes of mutation and selection. The evolution
occurs on rugged fitness landscapes which are defined on the multi-dimensional
genotypic space and have many local peaks separated by low fitness valleys. We
mainly focus on the Eigen's model that describes the deterministic dynamics of
an infinite number of self-replicating molecules. In the stationary state, for
small mutation rates such a population forms a {\it quasispecies} which
consists of the fittest genotype and its closely related mutants. The
quasispecies dynamics on rugged fitness landscape follow a punctuated (or
step-like) pattern in which a population jumps from a low fitness peak to a
higher one, stays there for a considerable time before shifting the peak again
and eventually reaches the global maximum of the fitness landscape. We
calculate exactly several properties of this dynamical process within a
simplified version of the quasispecies model.Comment: Proceedings of Statphys conference at IIT Guwahati, to be published
in Praman
- …