78 research outputs found

    Position-momentum uncertainty relations based on moments of arbitrary order

    Get PDF
    The position-momentum uncertainty-like inequality based on moments of arbitrary order for d-dimensional quantum systems, which is a generalization of the celebrated Heisenberg formulation of the uncertainty principle, is improved here by use of the Renyi-entropy-based uncertainty relation. The accuracy of the resulting lower bound is physico-computationally analyzed for the two main prototypes in d-dimensional physics: the hydrogenic and oscillator-like systems.Comment: 31 pages, 9 figure

    A family of generalized quantum entropies: definition and properties

    Get PDF
    We present a quantum version of the generalized (h,ϕ)(h,\phi)-entropies, introduced by Salicr\'u \textit{et al.} for the study of classical probability distributions. We establish their basic properties, and show that already known quantum entropies such as von Neumann, and quantum versions of R\'enyi, Tsallis, and unified entropies, constitute particular classes of the present general quantum Salicr\'u form. We exhibit that majorization plays a key role in explaining most of their common features. We give a characterization of the quantum (h,ϕ)(h,\phi)-entropies under the action of quantum operations, and study their properties for composite systems. We apply these generalized entropies to the problem of detection of quantum entanglement, and introduce a discussion on possible generalized conditional entropies as well.Comment: 26 pages, 1 figure. Close to published versio

    Unified entropic measures of quantum correlations induced by local measurements

    Get PDF
    We introduce quantum correlations measures based on the minimal change in unified entropies induced by local rank-one projective measurements, divided by a factor that depends on the generalized purity of the system in the case of non-additive entropies. In this way, we overcome the issue of the artificial increasing of the value of quantum correlations measures based on non-additive entropies when an uncorrelated ancilla is appended to the system without changing the computability of our entropic correlations measures with respect to the previous ones. Moreover, we recover as limiting cases the quantum correlations measures based on von Neumann and R\'enyi entropies (i.e., additive entropies), for which the adjustment factor becomes trivial. In addition, we distinguish between total and semiquantum correlations and obtain some relations between them. Finally, we obtain analytical expressions of the entropic correlations measures for typical quantum bipartite systems.Comment: 10 pages, 1 figur

    General entropy-like uncertainty relations in finite dimensions

    Get PDF
    We revisit entropic formulations of the uncertainty principle for an arbitrary pair of positive operator-valued measures (POVM) AA and BB, acting on finite dimensional Hilbert space. Salicr\'u generalized (h,ϕ)(h,\phi)-entropies, including R\'enyi and Tsallis ones among others, are used as uncertainty measures associated with the distribution probabilities corresponding to the outcomes of the observables. We obtain a nontrivial lower bound for the sum of generalized entropies for any pair of entropic functionals, which is valid for both pure and mixed states. The bound depends on the overlap triplet (cA,cB,cA,B)(c_A,c_B,c_{A,B}) with cAc_A (resp. cBc_B) being the overlap between the elements of the POVM AA (resp. BB) and cA,Bc_{A,B} the overlap between the pair of POVM. Our approach is inspired by that of de Vicente and S\'anchez-Ruiz [Phys.\ Rev.\ A \textbf{77}, 042110 (2008)] and consists in a minimization of the entropy sum subject to the Landau-Pollak inequality that links the maximum probabilities of both observables. We solve the constrained optimization problem in a geometrical way and furthermore, when dealing with R\'enyi or Tsallis entropic formulations of the uncertainty principle, we overcome the H\"older conjugacy constraint imposed on the entropic indices by the Riesz-Thorin theorem. In the case of nondegenerate observables, we show that for given cA,B>12c_{A,B} > \frac{1}{\sqrt2}, the bound obtained is optimal; and that, for R\'enyi entropies, our bound improves Deutsch one, but Maassen-Uffink bound prevails when cA,B12c_{A,B} \leq\frac12. Finally, we illustrate by comparing our bound with known previous results in particular cases of R\'enyi and Tsallis entropies

    Mixing Bandt-Pompe and Lempel-Ziv approaches: another way to analyze the complexity of continuous-states sequences

    Get PDF
    In this paper, we propose to mix the approach underlying Bandt-Pompe permutation entropy with Lempel-Ziv complexity, to design what we call Lempel-Ziv permutation complexity. The principle consists of two steps: (i) transformation of a continuous-state series that is intrinsically multivariate or arises from embedding into a sequence of permutation vectors, where the components are the positions of the components of the initial vector when re-arranged; (ii) performing the Lempel-Ziv complexity for this series of `symbols', as part of a discrete finite-size alphabet. On the one hand, the permutation entropy of Bandt-Pompe aims at the study of the entropy of such a sequence; i.e., the entropy of patterns in a sequence (e.g., local increases or decreases). On the other hand, the Lempel-Ziv complexity of a discrete-state sequence aims at the study of the temporal organization of the symbols (i.e., the rate of compressibility of the sequence). Thus, the Lempel-Ziv permutation complexity aims to take advantage of both of these methods. The potential from such a combined approach - of a permutation procedure and a complexity analysis - is evaluated through the illustration of some simulated data and some real data. In both cases, we compare the individual approaches and the combined approach.Comment: 30 pages, 4 figure

    Geometric approach to extend Landau-Pollak uncertainty relations for positive operator-valued measures

    Get PDF
    We provide a twofold extension of Landau--Pollak uncertainty relations for mixed quantum states and for positive operator-valued measures, by recourse to geometric considerations. The generalization is based on metrics between pure states, having the form of a function of the square of the inner product between the states. The triangle inequality satisfied by such metrics plays a crucial role in our derivation. The usual Landau--Pollak inequality is thus a particular case (derived from Wootters metric) of the family of inequalities obtained, and, moreover, we show that it is the most restrictive relation within the family.Comment: 9 pages, 2 figure

    Geometric approach to extend Landau-Pollak uncertainty relations for positive operator-valued measures

    Get PDF
    We provide a twofold extension of Landau-Pollak uncertainty relations for mixed quantum states and for positive operator-valued measures, by recourse to geometric considerations. The generalization is based on metrics between pure states, having the form of a function of the square of the inner product between the states. The triangle inequality satisfied by such metrics plays a crucial role in our derivation. The usual Landau-Pollak inequality is thus a particular case (derived from Wootters metric) of the family of inequalities obtained, and, moreover, we show that it is the most restrictive relation within the family.Instituto de Física La Plat

    A family of generalized quantum entropies: definition and properties

    Get PDF
    We present a quantum version of the generalized (h, φ)-entropies, introduced by Salicrú et al. for the study of classical probability distributions.We establish their basic properties and show that already known quantum entropies such as von Neumann, and quantum versions of Rényi, Tsallis, and unified entropies, constitute particular classes of the present general quantum Salicrú form. We exhibit that majorization plays a key role in explaining most of their common features. We give a characterization of the quantum (h, φ)-entropies under the action of quantum operations and study their properties for composite systems. We apply these generalized entropies to the problem of detection of quantum entanglement and introduce a discussion on possible generalized conditional entropies as well.Facultad de Ciencias ExactasInstituto de Física La Plat

    Comment on "Quantum Kaniadakis entropy under projective measurement"

    Get PDF
    We comment on the main result given by Ourabah et al. [Phys. Rev. E 92, 032114 (2015)PLEEE81539-375510.1103/PhysRevE.92.032114], noting that it can be derived as a special case of the more general study that we have provided in [Quantum Inf Process 15, 3393 (2016)10.1007/s11128-016-1329-5]. Our proof of the nondecreasing character under projective measurements of so-called generalized (h,φ) entropies (that comprise the Kaniadakis family as a particular case) has been based on majorization and Schur-concavity arguments. As a consequence, we have obtained that this property is obviously satisfied by Kaniadakis entropy but at the same time is fulfilled by all entropies preserving majorization. In addition, we have seen that our result holds for any bistochastic map, being a projective measurement a particular case. We argue here that looking at these facts from the point of view given in [Quantum Inf Process 15, 3393 (2016)10.1007/s11128-016-1329-5] not only simplifies the demonstrations but allows for a deeper understanding of the entropic properties involved.Instituto de Física La Plat
    corecore