10,815 research outputs found

    On h h -transforms of one-dimensional diffusions stopped upon hitting zero

    Get PDF
    For a one-dimensional diffusion on an interval for which 0 is the regular-reflecting left boundary, three kinds of conditionings to avoid zero are studied. The limit processes are h h -transforms of the process stopped upon hitting zero, where h h 's are the ground state, the scale function, and the renormalized zero-resolvent. Several properties of the h h -transforms are investigated

    N=2 Boundary conditions for non-linear sigma models and Landau-Ginzburg models

    Get PDF
    We study N=2 nonlinear two dimensional sigma models with boundaries and their massive generalizations (the Landau-Ginzburg models). These models are defined over either Kahler or bihermitian target space manifolds. We determine the most general local N=2 superconformal boundary conditions (D-branes) for these sigma models. In the Kahler case we reproduce the known results in a systematic fashion including interesting results concerning the coisotropic A-type branes. We further analyse the N=2 superconformal boundary conditions for sigma models defined over a bihermitian manifold with torsion. We interpret the boundary conditions in terms of different types of submanifolds of the target space. We point out how the open sigma models correspond to new types of target space geometry. For the massive Landau-Ginzburg models (both Kahler and bihermitian) we discuss an important class of supersymmetric boundary conditions which admits a nice geometrical interpretation.Comment: 48 pages, latex, references and minor comments added, the version to appear in JHE

    On the Cartan Model of the Canonical Vector Bundles over Grassmannians

    Full text link
    We give a representation of canonical vector bundles over Grassmannian manifolds as non-compact affine symmetric spaces as well as their Cartan model in the group of the Euclidean motions.Comment: 6 page
    corecore