31,500 research outputs found
Acoustic detection of air shower cores
At an altitude of 1890m, a pre-test with an Air shower (AS) core selector and a small acoustic array set up in an anechoic pool with a volume of 20x7x7 cu m was performed, beginning in Aug. 1984. In analyzing the waveforms recorded during the effective working time of 186 hrs, three acoustic signals which cannot be explained as from any source other than AS cores were obtained, and an estimation of related parameters was made
Recommended from our members
Calibration of probabilistic quantitative precipitation forecasts with an artificial neural network
A feed-forward neural network is configured to calibrate the bias of a high-resolution probabilistic quantitative precipitation forecast (PQPF) produced by a 12-km version of the NCEP Regional Spectral Model (RSM) ensemble forecast system. Twice-daily forecasts during the 2002-2003 cool season (1 November-31 March, inclusive) are run over four U.S. Geological Survey (USGS) hydrologic unit regions of the southwest United States. Calibration is performed via a cross-validation procedure, where four months are used for training and the excluded month is used for testing. The PQPFs before and after the calibration over a hydrological unit region are evaluated by comparing the joint probability distribution of forecasts and observations. Verification is performed on the 4-km stage IV grid, which is used as "truth." The calibration procedure improves the Brier score (BrS), conditional bias (reliability) and forecast skill, such as the Brier skill score (BrSS) and the ranked probability skill score (RPSS), relative to the sample frequency for all geographic regions and most precipitation thresholds. However, the procedure degrades the resolution of the PQPFs by systematically producing more forecasts with low nonzero forecast probabilities that drive the forecast distribution closer to the climatology of the training sample. The problem of degrading the resolution is most severe over the Colorado River basin and the Great Basin for relatively high precipitation thresholds where the sample of observed events is relatively small. © 2007 American Meteorological Society
Recommended from our members
Short-range probabilistic quantitative precipitation forecasts over the southwest United States by the RSM ensemble system
The National Centers for Environmental Prediction (NCEP) Regional Spectral Model (RSM) is used to produce twice-daily (0000 and 1200 UTC), high-resolution ensemble forecasts to 24 h. The forecasts are performed at an equivalent horizontal grid spacing of 12 km for the period 1 November 2002 to 31 March 2003 over the southwest United States. The performance of 6-h accumulated precipitation is assessed for 32 U.S. Geological Survey hydrologic catchments. Multiple accuracy and skill measures are used to evaluate probabilistic quantitative precipitation forecasts. NCEP stage-IV precipitation analyses are used as "truth," with verification performed on the stage-IV 4-km grid. The RSM ensemble exhibits a ubiquitous wet bias. The bias manifests itself in areal coverage, frequency of occurrence, and total accumulated precipitation over every region and during every 6-h period. The biases become particularly acute starting with the 1800-0000 UTC interval, which leads to a spurious diurnal cycle and the 1200 UTC cycle being more adversely affected than the 0000 UTC cycle. Forecast quality and value exhibit marked variability over different hydrologic regions. The forecasts are highly skillful along coastal California and the windward slopes of the Sierra Nevada Mountains, but they generally lack skill over the Great Basin and the Colorado basin except over mountain peaks. The RSM ensemble is able to discriminate precipitation events and provide useful guidance to a wide range of users over most regions of California, which suggests that mitigation of the conditional biases through statistical postprocessing would produce major improvements in skill. © 2007 American Meteorological Society
- …