35 research outputs found
Reentrant valence transition in EuO at high pressures: beyond the bond-valence model
The pressure-dependent relation between Eu valence and lattice structure in
model compound EuO is studied with synchrotron-based x-ray spectroscopic and
diffraction techniques. Contrary to expectation, a 7% volume collapse at
45 GPa is accompanied by a reentrant Eu valence transition into a
\emph{lower} valence state. In addition to highlighting the need for probing
both structure and electronic states directly when valence information is
sought in mixed-valent systems, the results also show that widely used
bond-valence methods fail to quantitatively describe the complex electronic
valence behavior of EuO under pressure.Comment: 5 pages, 4 figure
Ahrensite, γ-Fe_2SiO_4, a new shock-metamorphic mineral from the Tissint meteorite: Implications for the Tissint shock event on Mars
Ahrensite (IMA 2013-028), γ-Fe_2SiO_4, is the natural Fe-analog of the silicate-spinel ringwoodite (γ-Mg_2SiO_4). It occurs in the Tissint Martian meteorite, where it forms through the transformation of the fayalite-rich rims of olivine megacrysts or Fe-rich microphenocrysts in contact with shock melt pockets. The typical sequence of phase assemblages traversing across a Tissint melt pocket into olivine is: quenched melt or fayalite-pigeonite intergrowth ⇒ bridgmanite + wüstite ⇒ ahrensite and/or ringwoodite ⇒ highly-deformed olivine + nanocrystalline ringwoodite ⇒ deformed olivine. We report the first comprehensive set of crystallographic, spectroscopic, and quantitative chemical analysis of type ahrensite, and show that concentrations of ferric iron and inversion in the type material of this newly approved mineral are negligible. We also report the occurrence of nanocrystalline ringwoodite in strained olivine and establish correlations between grain size and distance from melt pockets. The ahrensite and ringwoodite crystals show no preferred orientation, consistent with random nucleation and incoherent growth within a highly strained matrix of olivine. Grain sizes of ahrensite immediately adjacent to melt pockets are consistent with growth during a shock of moderate duration (1–10 ms)
Controlled formation of metastable germanium polymorphs
The nucleation of metastable germanium polymorphs on decompression is studied using in situ synchrotron x-ray diffraction. We show that the transition pathway is critically dependent on the hydrostaticity. Quasihydrostatic conditions result in the nucleation of the rhombohedral r8 phase, followed by the cubic bc8 and hexagonal diamond phases. In contrast, the presence of shear yields the tetragonal st12 phase. Thus, targeted nucleation of a metastable polymorph is now possible. This observation has implications for the technological exploitation of Ge, but also for other tetrahedral systems
Thermodynamics of pyrope-majorite, Mg3Al2Si3O12-Mg4Si4O12, solid solution from atomistic model calculations
Static lattice energy calculations, based on empirical pair potentials have been performed for a large set of different structures with compositions between pyrope and majorite, and with different states of order of octahedral cations. The energies have been cluster expanded using pair and quaternary terms. The derived ordering constants have been used to constrain Monte Carlo simulations of temperature-dependent properties in the ranges of 1073 3673K and 0 20 GPa. The free energies of mixing have been calculated using the method of thermodynamic integration. At zero pressure the cubic/tetragonal transition is predicted for pure majorite at 3300 K. The transition temperature decreases with the increase of the pyrope mole fraction. A miscibility gap associated with the transition starts to develop at about 2000K and xmaj 0.8, and widens with the decrease in temperature and the increase in pressure. Activity composition relations in the range of 0 20 GPa and 1073 2673K are described with the help of a high-order Redlich Kister polynomial
Single-crystal elastic properties of Ca0.07Mg1.93Si2O6 orthopyroxene
Abstract n\ub0 MR11B-012