825 research outputs found
Conventional Superconductivity in Fe-Based Pnictides: the Relevance of Intra-Band Electron-Boson Scattering
Various recent experimental data and especially the large Fe-isotope effect
point against unconventional pairings, since the large intra-band impurity
scattering is strongly pair-breaking for them. The strength of the inter-band
impurity scattering in some single crystals may be strong and probably beyond
the Born scattering limit. In that case the proposed s(+-) pairing (hole(h)-
and electron(el)-gaps are of opposite signs) is suppressed but possibly not
completely destroyed. The data imply that the intra-band pairing in the h- and
in the el-band, which are inevitably due to some nonmagnetic el-boson
interaction (EBI), must be taken into account. EBI is either due to phonons
(EPI) or possibly due to excitons (EEI), or both are simultaneously operative.
We discuss their interplay briefly. The large Fe-isotope effect favors the EPI
and the s(+) pairing (the h- and el-gaps are in-phase).Comment: 7 pages, no figures, explanations and argumentations improved,
references adde
Shape of the inflaton potential and the efficiency of the universe heating
It is shown that the efficiency of the universe heating by an inflaton field
depends not only on the possible presence of parametric resonance in the
production of scalar particles but also strongly depends on the character of
the inflaton approach to its mechanical equilibrium point. In particular, when
the inflaton oscillations deviate from pure harmonic ones toward a succession
of step functions, the production probability rises by several orders of
magnitude. This in turn leads to a much higher temperature of the universe
after the inflaton decay, in comparison to the harmonic case. An example of the
inflaton potential is presented which creates a proper modification of the
evolution of the inflaton toward equilibrium and does not destroy the nice
features of inflation.Comment: 14 pages, 12 figures; final version published in EPJ
Baryogenesis from Gravitational Decay of TeV-Particles in Theories with Low Scale Gravity
In models with the fundamental gravity scale in the TeV range, early
cosmology is quite different from the standard picture, because the universe
must have arisen at a much lower temperature and the electroweak symmetry was
probably never restored. In this context, baryogenesis appears to be
problematic: if the involved physics is essentially that of the Standard Model,
``conventional'' non-conserving baryon number processes are completely
negligible at such low temperatures. In this paper we show that the observed
matter-antimatter asymmetry of the universe may be generated by gravitational
decay of TeV-mass particles: such objects can be out of equilibrium after
inflation and, if their mass is of the same order of magnitude as the true
quantum gravity scale, they can quickly decay through a black hole intermediate
state, violating global symmetries, in particular, baryon number. In this
context, we take advantage of the fact that the ``Sakharov conditions'' for
baryogenesis can be more easily satisfied with a low fundamental scale of
gravity.Comment: 18 pages, added reference
Baryogenesis, 30 Years after
A review of the basic principles of baryogenesis is given. Baryogenesis in
heavy particle decays as well as electroweak, SUSY-condensate, and spontaneous
baryogenesis are discussed. The models of abundant creation of antimatter in
the universe are briefly reviewed.Comment: 30 pages, latex twic
Cosmology and New Physics
A comparison of the standard models in particle physics and in cosmology
demonstrates that they are not compatible, though both are well established.
Basics of modern cosmology are briefly reviewed. It is argued that the
measurements of the main cosmological parameters are achieved through many
independent physical phenomena and this minimizes possible interpretation
errors. It is shown that astronomy demands new physics beyond the frameworks of
the (minimal) standard model in particle physics. More revolutionary
modifications of the basic principles of the theory are also discussed.Comment: 37 pages, 5 figures; lectures presented at 9th International Moscow
School of Physics (34th ITEP Winter School
Cosmology and Neutrino Properties
This is a brief review for particle physicists on cosmological impact of
neutrinos and on restrictions on neutrino properties from cosmology. The paper
includes discussion of upper bounds on neutrino mass and possible ways to relax
them, methods to observe the cosmic neutrino background, bounds on the
cosmological lepton asymmetry which are strongly improved by neutrino
oscillations, cosmological effects of breaking of spin-statistics theorem for
neutrinos, bounds on mixing parameters of active and possible sterile neutrinos
with the account of active neutrino oscillations, bounds on right-handed
currents and neutrino magnetic moments, and some more.Comment: Talk presented at the meeting of Nuclear Physics Division of Russian
Academy of Sci., November, 2007, Moscow. 21 pages, 3 figures. One reference
is added and some numbers are slightly correcte
- …