176 research outputs found

    A swollen phase observed between the liquid-crystalline phase and the interdigitated phase induced by pressure and/or adding ethanol in DPPC aqueous solution

    Full text link
    A swollen phase, in which the mean repeat distance of lipid bilayers is larger than the other phases, is found between the liquid-crystalline phase and the interdigitated gel phase in DPPC aqueous solution. Temperature, pressure and ethanol concentration dependences of the structure were investigated by small-angle neutron scattering, and a bending rigidity of lipid bilayers was by neutron spin echo. The nature of the swollen phase is similar to the anomalous swelling reported previously. However, the temperature dependence of the mean repeat distance and the bending rigidity of lipid bilayers are different. This phase could be a precursor to the interdigitated gel phase induced by pressure and/or adding ethanol.Comment: 7 pages, 6 figure

    Interaction of Aspirin (Acetylsalicylic Acid) with Lipid Membranes

    Get PDF
    We studied the interaction of Aspirin (acetylsalicylic acid) with lipid membranes using x-ray diffraction for bilayers containing up to 50 mol% of aspirin. From 2D x-ray intensity maps that cover large areas of reciprocal space we determined the position of the ASA molecules in the phospholipid bilayers and the molecular arrangement of the molecules in the plane of the membranes. We present direct experimental evidence that ASA molecules participate in saturated lipid bilayers of DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine) and preferably reside in the head group region of the membrane. Up to 50 mol% ASA molecules can be dissolved in this type of bilayer before the lateral membrane organization is disturbed and the membranes are found to form an ordered, 2D crystal-like structure. Furthermore, ASA and cholesterol were found to co-exist in saturated lipid bilayers, with the ASA molecules residing in the head group region and the cholesterol molecules participating in the hydrophobic membrane core

    The ELBA Force Field for Coarse-Grain Modeling of Lipid Membranes

    Get PDF
    A new coarse-grain model for molecular dynamics simulation of lipid membranes is presented. Following a simple and conventional approach, lipid molecules are modeled by spherical sites, each representing a group of several atoms. In contrast to common coarse-grain methods, two original (interdependent) features are here adopted. First, the main electrostatics are modeled explicitly by charges and dipoles, which interact realistically through a relative dielectric constant of unity (). Second, water molecules are represented individually through a new parametrization of the simple Stockmayer potential for polar fluids; each water molecule is therefore described by a single spherical site embedded with a point dipole. The force field is shown to accurately reproduce the main physical properties of single-species phospholipid bilayers comprising dioleoylphosphatidylcholine (DOPC) and dioleoylphosphatidylethanolamine (DOPE) in the liquid crystal phase, as well as distearoylphosphatidylcholine (DSPC) in the liquid crystal and gel phases. Insights are presented into fundamental properties and phenomena that can be difficult or impossible to study with alternative computational or experimental methods. For example, we investigate the internal pressure distribution, dipole potential, lipid diffusion, and spontaneous self-assembly. Simulations lasting up to 1.5 microseconds were conducted for systems of different sizes (128, 512 and 1058 lipids); this also allowed us to identify size-dependent artifacts that are expected to affect membrane simulations in general. Future extensions and applications are discussed, particularly in relation to the methodology's inherent multiscale capabilities

    Structure and interactions of fully hydrated dioleoylphosphatidylcholine bilayers.

    Get PDF
    This study focuses on dioleoylphosphatidylcholine (DOPC) bilayers near full hydration. Volumetric data and high-resolution synchrotron x-ray data are used in a method that compares DOPC with well determined gel phase dipalmitoylphosphatidylcholine (DPPC). The key structural quantity obtained is fully hydrated area/lipid A0 = 72.2 +/- 1.1 A2 at 30 degrees C, from which other quantities such as thickness of the bilayer are obtained. Data for samples over osmotic pressures from 0 to 56 atmospheres give an estimate for the area compressibility of KA = 188 dyn/cm. Obtaining the continuous scattering transform and electron density profiles requires correction for liquid crystal fluctuations. Quantitation of these fluctuations opens an experimental window on the fluctuation pressure, the primary repulsive interaction near full hydration. The fluctuation pressure decays exponentially with water spacing, in agreement with analytical results for soft confinement. However, the ratio of decay length lambda(fl) = 5.8 A to hydration pressure decay length lambda = 2.2 A is significantly larger than the value of 2 predicted by analytical theory and close to the ratio obtained in recent simulations. We also obtain the traditional osmotic pressure versus water spacing data. Our analysis of these data shows that estimates of the Hamaker parameter H and the bending modulus Kc are strongly coupled

    Anomalous phase behavior of long chain saturated lecithin bilayers

    Get PDF
    AbstractX-ray scattering has been performed on fully hydrated unoriented multilamellar vesicles of lecithins with even chain lengths n from 16 to 24 as a function of temperature in chain ordered phases. The longer chain lengths, n ≥ 20, show anomalous behavior compared to the shorter chain lengths, n < 20. This report concentrates on n = 24. Although the history and time dependence shows that equilibrium was not always achieved, it appears that there is a second gel-like phase G2 below 40°C. The G2 phase has a small tilt angle and opposite hexagonal symmetry breaking from the usual G1 gel phase. Also, as T is raised above 45°C, the wide-angle data suggest the appearance of a phase with hexagonal chain packing and small chain tilt angle

    Effect of the HIV-1 fusion peptide on the mechanical properties and leaflet coupling of lipid bilayers

    No full text
    The fusion peptide (FP) of the human immunodeficiency virus (HIV) is part of the N-terminus of the viral envelope glycoprotein gp41 and is believed to play an important role in the viral entry process. To understand the immediate effect of this peptide on the cell membrane, we have studied the influence of the synthetic FP sequence FP23 on the mechanical properties of model lipid bilayers. For this purpose, giant unilamellar vesicles were prepared from the unsaturated lipid dioleoylphosphatidylcholine mixed in various molar ratios with FP23. The bending stiffness of the vesicles was measured with two different methods: fluctuation analysis and aspiration with micropipettes. The data obtained from both of these approaches show that the bending stiffness of the membrane decreases gradually with increasing concentration of the FP23 in the bilayer. Low concentrations of only a few mol% FP23 are sufficient to decrease the bending stiffness of the lipid bilayer by about a factor of 2. Finally, data obtained for the stretching elasticity modulus of the membrane suggest that the peptide insertion decreases the coupling between the two leaflets of the bilayer
    corecore