921 research outputs found
Melting and metallization of silica in the cores of gas giants, ice giants and super Earths
The physical state and properties of silicates at conditions encountered in
the cores of gas giants, ice giants and of Earth like exoplanets now discovered
with masses up to several times the mass of the Earth remains mostly unknown.
Here, we report on theoretical predictions of the properties of silica,
SiO, up to 4 TPa and about 20,000K using first principle molecular dynamics
simulations based on density functional theory. For conditions found in the
Super-Earths and in ice giants, we show that silica remains a poor electrical
conductor up to 10 Mbar due to an increase in the Si-O coordination with
pressure. For Jupiter and Saturn cores, we find that MgSiO silicate has not
only dissociated into MgO and SiO, as shown in previous studies, but that
these two phases have likely differentiated to lead to a core made of liquid
SiO and solid (Mg,Fe)O.Comment: 5 pages, 4 figure
Background factors in patients receiving immunoglobulin administration and changes in sepsis markers
Structure of 55Sc and development of the N=34 subshell closure
The low-lying structure of Sc has been investigated using in-beam
-ray spectroscopy with the Be(Ti,Sc+)
one-proton removal and Be(Sc,Sc+)
inelastic-scattering reactions at the RIKEN Radioactive Isotope Beam Factory.
Transitions with energies of 572(4), 695(5), 1539(10), 1730(20), 1854(27),
2091(19), 2452(26), and 3241(39) keV are reported, and a level scheme has been
constructed using coincidence relationships and -ray
relative intensities. The results are compared to large-scale shell-model
calculations in the - model space, which account for positive-parity
states from proton-hole cross-shell excitations, and to it ab initio
shell-model calculations from the in-medium similarity renormalization group
that includes three-nucleon forces explicitly. The results of proton-removal
reaction theory with the eikonal model approach were adopted to aid
identification of positive-parity states in the level scheme; experimental
counterparts of theoretical and states are
suggested from measured decay patterns. The energy of the first
state, which is sensitive to the neutron shell gap at the Fermi surface, was
determined. The result indicates a rapid weakening of the subshell
closure in -shell nuclei at , even when only a single proton occupies
the orbital
Import of cytochrome c into mitochondria
The import of cytochrome c into mitochondria can be resolved into a number of discrete steps. Here we report on the covalent attachment of heme to apocytochrome c by the enzyme cytochrome c heme lyase in mitochondria from Neurospora crassa.
A new method was developed to measure directly the linkage of heme to apocytochrome c. This method is independent of conformational changes in the protein accompanying heme attachment. Tryptic peptides of [35S]cysteine-labelled apocytochrome c, and of enzymatically formed holocytochrome c, were resolved by reverse-phase HPLC. The cysteine-containing peptide to which heme was attached eluted later than the corresponding peptide from apocytochrome c and could be quantified by counting 35S radioactivity as a measure of holocytochrome c formation. Using this procedure, the covalent attachment of heme to apocytochrome c, which is dependent on the enzyme cytochrome c heme lyase, could be measured. Activity required heme (as hemin) and could be reversibly inhibited by the analogue deuterohemin. Holocytochrome c formation was stimulated 5–10-fold by NADH > NADPH > glutathione and was independent of a potential across the inner mitochondrial membrane. NADH was not required for the binding of apocytochrome c to mitochondria and was not involved in the reduction of the cysteine thiols prior to heme attachment. Holocytochrome c formation was also dependent on a cytosolic factor that was necessary for the heme attaching step of cytochrome c import. The factor was a heat-stable, protease-insensitive, low-molecular-mass component of unknown function.
Cytochrome c heme lyase appeared to be a soluble protein located in the mitochondrial intermembrane space and was distinct from the previously identified apocytochrome c binding protein having a similar location. A model is presented in which the covalent attachment of heme by cytochrome c heme lyase also plays an essential role in the import pathway of cytochrome c
- …