921 research outputs found

    Melting and metallization of silica in the cores of gas giants, ice giants and super Earths

    Full text link
    The physical state and properties of silicates at conditions encountered in the cores of gas giants, ice giants and of Earth like exoplanets now discovered with masses up to several times the mass of the Earth remains mostly unknown. Here, we report on theoretical predictions of the properties of silica, SiO2_2, up to 4 TPa and about 20,000K using first principle molecular dynamics simulations based on density functional theory. For conditions found in the Super-Earths and in ice giants, we show that silica remains a poor electrical conductor up to 10 Mbar due to an increase in the Si-O coordination with pressure. For Jupiter and Saturn cores, we find that MgSiO3_3 silicate has not only dissociated into MgO and SiO2_2, as shown in previous studies, but that these two phases have likely differentiated to lead to a core made of liquid SiO2_2 and solid (Mg,Fe)O.Comment: 5 pages, 4 figure

    New sepsis-related marker: endotoxin activity assay

    Get PDF

    Structure of 55Sc and development of the N=34 subshell closure

    Get PDF
    The low-lying structure of 55^{55}Sc has been investigated using in-beam γ\gamma-ray spectroscopy with the 9^{9}Be(56^{56}Ti,55^{55}Sc+γ\gamma)XX one-proton removal and 9^{9}Be(55^{55}Sc,55^{55}Sc+γ\gamma)XX inelastic-scattering reactions at the RIKEN Radioactive Isotope Beam Factory. Transitions with energies of 572(4), 695(5), 1539(10), 1730(20), 1854(27), 2091(19), 2452(26), and 3241(39) keV are reported, and a level scheme has been constructed using γγ\gamma\gamma coincidence relationships and γ\gamma-ray relative intensities. The results are compared to large-scale shell-model calculations in the sdsd-pfpf model space, which account for positive-parity states from proton-hole cross-shell excitations, and to it ab initio shell-model calculations from the in-medium similarity renormalization group that includes three-nucleon forces explicitly. The results of proton-removal reaction theory with the eikonal model approach were adopted to aid identification of positive-parity states in the level scheme; experimental counterparts of theoretical 1/21+1/2^{+}_{1} and 3/21+3/2^{+}_{1} states are suggested from measured decay patterns. The energy of the first 3/23/2^{-} state, which is sensitive to the neutron shell gap at the Fermi surface, was determined. The result indicates a rapid weakening of the N=34N=34 subshell closure in pfpf-shell nuclei at Z>20Z>20, even when only a single proton occupies the πf7/2\pi f_{7/2} orbital

    Import of cytochrome c into mitochondria

    Get PDF
    The import of cytochrome c into mitochondria can be resolved into a number of discrete steps. Here we report on the covalent attachment of heme to apocytochrome c by the enzyme cytochrome c heme lyase in mitochondria from Neurospora crassa. A new method was developed to measure directly the linkage of heme to apocytochrome c. This method is independent of conformational changes in the protein accompanying heme attachment. Tryptic peptides of [35S]cysteine-labelled apocytochrome c, and of enzymatically formed holocytochrome c, were resolved by reverse-phase HPLC. The cysteine-containing peptide to which heme was attached eluted later than the corresponding peptide from apocytochrome c and could be quantified by counting 35S radioactivity as a measure of holocytochrome c formation. Using this procedure, the covalent attachment of heme to apocytochrome c, which is dependent on the enzyme cytochrome c heme lyase, could be measured. Activity required heme (as hemin) and could be reversibly inhibited by the analogue deuterohemin. Holocytochrome c formation was stimulated 5–10-fold by NADH > NADPH > glutathione and was independent of a potential across the inner mitochondrial membrane. NADH was not required for the binding of apocytochrome c to mitochondria and was not involved in the reduction of the cysteine thiols prior to heme attachment. Holocytochrome c formation was also dependent on a cytosolic factor that was necessary for the heme attaching step of cytochrome c import. The factor was a heat-stable, protease-insensitive, low-molecular-mass component of unknown function. Cytochrome c heme lyase appeared to be a soluble protein located in the mitochondrial intermembrane space and was distinct from the previously identified apocytochrome c binding protein having a similar location. A model is presented in which the covalent attachment of heme by cytochrome c heme lyase also plays an essential role in the import pathway of cytochrome c
    corecore