34 research outputs found

    A Complete Skull of an Early Cretaceous Sauropod and the Evolution of Advanced Titanosaurians

    Get PDF
    Advanced titanosaurian sauropods, such as nemegtosaurids and saltasaurids, were diverse and one of the most important groups of herbivores in the terrestrial biotas of the Late Cretaceous. However, little is known about their rise and diversification prior to the Late Cretaceous. Furthermore, the evolution of their highly-modified skull anatomy has been largely hindered by the scarcity of well-preserved cranial remains. A new sauropod dinosaur from the Early Cretaceous of Brazil represents the earliest advanced titanosaurian known to date, demonstrating that the initial diversification of advanced titanosaurians was well under way at least 30 million years before their known radiation in the latest Cretaceous. The new taxon also preserves the most complete skull among titanosaurians, further revealing that their low and elongated diplodocid-like skull morphology appeared much earlier than previously thought

    A Nomenclature for Vertebral Fossae in Sauropods and Other Saurischian Dinosaurs

    Get PDF
    The axial skeleton of extinct saurischian dinosaurs (i.e., theropods, sauropodomorphs), like living birds, was pneumatized by epithelial outpocketings of the respiratory system. Pneumatic signatures in the vertebral column of fossil saurischians include complex branching chambers within the bone (internal pneumaticity) and large chambers visible externally that are bounded by neural arch laminae (external pneumaticity). Although general aspects of internal pneumaticity are synapomorphic for saurischian subgroups, the individual internal pneumatic spaces cannot be homologized across species or even along the vertebral column, due to their variability and absence of topographical landmarks. External pneumatic structures, in contrast, are defined by ready topological landmarks (vertebral laminae), but no consistent nomenclatural system exists. This deficiency has fostered confusion and limited their use as character data in phylogenetic analysis.We present a simple system for naming external neural arch fossae that parallels the one developed for the vertebral laminae that bound them. The nomenclatural system identifies fossae by pointing to reference landmarks (e.g., neural spine, centrum, costal articulations, zygapophyses). We standardize the naming process by creating tripartite names from “primary landmarks,” which form the zygodiapophyseal table, “secondary landmarks,” which orient with respect to that table, and “tertiary landmarks,” which further delineate a given fossa.The proposed nomenclatural system for lamina-bounded fossae adds clarity to descriptions of complex vertebrae and allows these structures to be sourced as character data for phylogenetic analyses. These anatomical terms denote potentially homologous pneumatic structures within Saurischia, but they could be applied to any vertebrate with vertebral laminae that enclose spaces, regardless of their developmental origin or phylogenetic distribution

    A basal lithostrotian titanosaur (Dinosauria: Sauropoda) with a complete skull: Implications for the evolution and paleobiology of titanosauria

    Get PDF
    We describe Sarmientosaurus musacchioi gen. et sp. nov., a titanosaurian sauropod dinosaur from the Upper Cretaceous (Cenomanian - Turonian) Lower Member of the Bajo Barreal Formation of southern Chubut Province in central Patagonia, Argentina. The holotypic and only known specimen consists of an articulated, virtually complete skull and part of the cranial and middle cervical series. Sarmientosaurus exhibits the following distinctive features that we interpret as autapomorphies: (1) maximum diameter of orbit nearly 40% rostrocaudal length of cranium; (2) complex maxilla - lacrimal articulation, in which the lacrimal clasps the ascending ramus of the maxilla; (3) medial edge of caudal sector of maxillary ascending ramus bordering bony nasal aperture with low but distinct ridge; (4) ´tongue-like´ ventral process of quadratojugal that overlaps quadrate caudally; (5) separate foramina for all three branches of the trigeminal nerve; (6) absence of median venous canal connecting infundibular region to ventral part of brainstem; (7) subvertical premaxillary, procumbent maxillary, and recumbent dentary teeth; (8) cervical vertebrae with ´strut-like´ centroprezygapophyseal laminae; (9) extremely elongate and slender ossified tendon positioned ventrolateral to cervical vertebrae and ribs. The cranial endocast of Sarmientosaurus preserves some of the most complete information obtained to date regarding the brain and sensory systems of sauropods. Phylogenetic analysis recovers the new taxon as a basal member of Lithostrotia, as the most plesiomorphic titanosaurian to be preserved with a complete skull. Sarmientosaurus provides a wealth of new cranial evidence that reaffirms the close relationship of titanosaurs to Brachiosauridae. Moreover, the presence of the relatively derived lithostrotian Tapuiasaurus in Aptian deposits indicates that the new Patagonian genus represents a ´ghost lineage´ with a comparatively plesiomorphic craniodental form, the evolutionary history of which is missing for at least 13 million years of the Cretaceous. The skull anatomy of Sarmientosaurus suggests that multiple titanosaurian species with dissimilar cranial structures coexisted in the early Late Cretaceous of southern South America. Furthermore, the new taxon possesses a number of distinctive morphologies - such as the ossified cervical tendon, extremely pneumatized cervical vertebrae, and a habitually downward- facing snout - that have rarely, if ever, been documented in other titanosaurs, thus broadening our understanding of the anatomical diversity of this remarkable sauropod clade. The latter two features were convergently acquired by at least one penecontemporaneous diplodocoid, and may represent mutual specializations for consuming low-growing vegetation.Fil: Martínez, RubÊn Darío. Universidad Nacional de la Patagonia; ArgentinaFil: Lamanna, Matthew C.. Carnegie Museum Of Natural History; Estados UnidosFil: Novas, Fernando Emilio. Consejo Nacional de Investigaciones Científicas y TÊcnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "bernardino Rivadavia"; ArgentinaFil: Ridgely, Ryan C.. Ohio University College Of Osteopathic Medicine; Estados UnidosFil: Casal, Gabriel. Universidad Nacional de la Patagonia; ArgentinaFil: Martínez, Javier E.. Hospital Regional de Comodoro Rivadavia; ArgentinaFil: Vita, Javier R.. Resonancia MagnÊtica Borelli; ArgentinaFil: Witmer, Lawrence M.. Ohio University College Of Osteopathic Medicine; Estados Unido

    First evidence of a mamenchisaurid dinosaur from the Upper Jurassic-Lower Cretaceous Phu Kradung Formation of Thailand

    No full text
    An isolated posterior cervical vertebra of a sauropod discovered at Phu Dan Ma (Kalasin Province, northeastern Thailand) is the first informative postcranial specimen from the Phu Kradung Formation, a Upper Jurassic to Lower Cretaceous continental unit. The vertebra is referred to the family Mamenchisauridae, otherwise mainly known from China. In addition, spatulate teeth from the same formation and a mid−dorsal vertebra from the Upper Jurassic Khlong Min Formation of southern Thailand are reassigned to this family. The occurrence of mamenchisaurids in the earliest Cretaceous of Thailand supports a hypothesis of geographical isolation of Central, Eastern, and Southeast Asia during the Late Jurassic. It also suggests that the main changes in their dinosaur assemblages occurred during the Early Cretaceous, rather than at the Jurassic–Cretaceous boundary

    A new skeleton of <em>Phuwiangosaurus sirindhornae</em> (Dinosauria, Sauropoda) from NE Thailand

    No full text
    <p>A new skeleton of a sauropod dinosaur has been discovered in the Early Cretaceous Sao Khua Formation at Ban Na Khrai in Changwat Kalasin (NE Thailand). All sauropod bones from Ban Na Khrai share all their characteristics with the type specimen of <em>Phuwiangosaurus sirindhornae</em> Martin, Buffetaut & Suteethorn 1994. The 60% complete skeleton is very well preserved and includes cranial elements (a tooth, a frontal, a postorbital, a squamosal, both quadrates, and the braincase), whereas the type specimen is only 10% complete and consists of postcranial bones only. The material from Ban Na Khrai belongs to a single subadult individual of <em>Phuwiangosaurus</em>, as attested by the unfused neurocentral sutures of the vertebrae, which are firmly fused and larger in size in the holotypic specimen. </p

    The earliest known pig from the Upper Eocene of Thailand

    No full text
    Volume: 41Start Page: 147End Page: 15

    A new hybodont shark assemblage from the Lower Cretaceous of Thailand.

    No full text
    International audienceIsolated teeth of five hybodont taxa (Hybodus sp., Parvodus sp., Lonchidion khoratensis nov. sp., Isanodus paladeji nov. gen., nov. sp., Heteroptychodus steinmanni) are described from the freshwater Sao Khua Formation of Thailand (Lower Cretaceous). This Early Cretaceous fauna appears less endemic, with some European affinities, than the hybodont fauna found in Thailand in the more recent Aptian/Albian Khok Kruat Formation. Teeth of Isanodus paladeji (Lonchidiidae) and Heteroptychodus steinmanni (Ptychodontidae) share an unusual ornamentation pattern suggesting that the origin of the family Ptychodontidae is nested among Asian Lonchidiidae
    corecore