1,264 research outputs found

    Non-Markovian quantum jumps

    Get PDF
    Open quantum systems that interact with structured reservoirs exhibit non-Markovian dynamics. We present a quantum jump method for treating the dynamics of such systems. This approach is a generalization of the standard Monte Carlo Wave Function (MCWF) method for Markovian dynamics. The MCWF method identifies decay rates with jump probabilities and fails for non-Markovian systems where the time-dependent rates become temporarily negative. Our non-Markovian quantum jump (NMQJ) approach circumvents this problem and provides an efficient unravelling of the ensemble dynamics.Comment: 4 pages, 2 figures.V2: rewritten abstract and introduction, title modified. V3: published version, new example case with photonic band ga

    Induced superconductivity in noncuprate layers of the Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} high-temperature superconductor: Modeling of scanning tunneling spectra

    Full text link
    We analyze how the coherence peaks observed in Scanning Tunneling Spectroscopy (STS) of cuprate high temperature superconductors are transferred from the cuprate layer to the oxide layers adjacent to the STS microscope tip. For this purpose, we have carried out a realistic multiband calculation for the superconducting state of Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} (Bi2212) assuming a short range d-wave pairing interaction confined to the nearest-neighbor Cu dx2−y2d_{x^2-y^2} orbitals. The resulting anomalous matrix elements of the Green's function allow us to monitor how pairing is then induced not only within the cuprate bilayer but also within and across other layers and sites. The symmetry properties of the various anomalous matrix elements and the related selection rules are delineated.Comment: 9 pages, 2 figures. Accepted for publication in Phys. Rev.

    Cold collisions between atoms in optical lattices

    Full text link
    We have simulated binary collisions between atoms in optical lattices during Sisyphus cooling. Our Monte Carlo Wave Function simulations show that the collisions selectively accelerate mainly the hotter atoms in the thermal ensemble, and thus affect the steady state which one would normally expect to reach in Sisyphus cooling without collisions.Comment: 4 pages, 1 figur

    Population trapping due to cavity losses

    Get PDF
    In population trapping the occupation of a decaying quantum level keeps a constant non-zero value. We show that an atom-cavity system interacting with an environment characterized by a non-flat spectrum, in the non-Markovian limit, exhibits such a behavior, effectively realizing the preservation of nonclassical states against dissipation. Our results allow to understand the role of cavity losses in hybrid solid state systems and pave the way to the proper description of leakage in the recently developed cavity quantum electrodynamic systems.Comment: 4 pages, 3 figures, version accepted for publication on Phys. Rev.

    Efficient Two-dimensional Subrecoil Raman Cooling of Atoms in a Tripod Configuration

    Full text link
    We present an efficient method for subrecoil cooling of neutral atoms by applying Raman cooling in 2D to a four-level tripod-system. The atoms can be cooled simultaneously in two directions using only three laser beams. We describe the cooling process with a simple model showing that the momentum distribution can be rapidly narrowed to velocity spread down to 0.1vrec0.1v_\text{rec}, corresponding to effective temperature equal to 0.01Trec0.01T_\text{rec}. This method opens new possibilities for cooling of neutral atoms.Comment: 6 pages, 3 figure
    • …
    corecore