187 research outputs found
Integration of operator-validated contours in deformable image registration for dose accumulation in radiotherapy
BACKGROUND AND PURPOSE: Deformable image registration (DIR) is a core element of adaptive radiotherapy workflows, integrating daily contour propagation and/or dose accumulation in their design. Propagated contours are usually manually validated and may be edited, thereby locally invalidating the registration result. This means the registration cannot be used for dose accumulation. In this study we proposed and evaluated a novel multi-modal DIR algorithm that incorporated contour information to guide the registration. This integrates operator-validated contours with the estimated deformation vector field and warped dose. MATERIALS AND METHODS: The proposed algorithm consisted of both a normalized gradient field-based data-fidelity term on the images and an optical flow data-fidelity term on the contours. The Helmholtz-Hodge decomposition was incorporated to ensure anatomically plausible deformations. The algorithm was validated for same- and cross-contrast Magnetic Resonance (MR) image registrations, Computed Tomography (CT) registrations, and CT-to-MR registrations for different anatomies, all based on challenging clinical situations. The contour-correspondence, anatomical fidelity, registration error, and dose warping error were evaluated. RESULTS: The proposed contour-guided algorithm considerably and significantly increased contour overlap, decreasing the mean distance to agreement by a factor of 1.3 to 13.7, compared to the best algorithm without contour-guidance. Importantly, the registration error and dose warping error decreased significantly, by a factor of 1.2 to 2.0. CONCLUSIONS: Our contour-guided algorithm ensured that the deformation vector field and warped quantitative information were consistent with the operator-validated contours. This provides a feasible semi-automatic strategy for spatially correct warping of quantitative information even in difficult and artefacted cases
Technical Note: Intensity-based quality assurance criteria for deformable image registration in image-guided radiotherapy
BACKGROUND: Deformable image registration is increasingly used in radiotherapy to adapt the treatment plan and accumulate the delivered dose. Consequently, clinical workflows using deformable image registration require quick and reliable quality assurance to accept registrations. Additionally, for online adaptive radiotherapy, quality assurance without the need for an operator to delineate contours while the patient is on the treatment table is needed. Established quality assurance criteria such as the Dice similarity coefficient or Hausdorff distance lack these qualities and also display a limited sensitivity to registration errors beyond soft tissue boundaries. PURPOSE: The purpose of this study is to investigate the existing intensity-based quality assurance criteria structural similarity and normalized mutual information for their ability to quickly and reliably identify registration errors for (online) adaptive radiotherapy and compare them to contour-based quality assurance criteria. METHODS: All criteria were tested using synthetic and simulated biomechanical deformations of 3D MR images as well as manually annotated 4D CT data. The quality assurance criteria were scored for classification performance, for their ability to predict the registration error, and for their spatial information. RESULTS: We found that besides being fast and operator-independent, the intensity-based criteria have the highest area under the receiver operating characteristic curve and provide the best input for models to predict the registration error on all data sets. Structural similarity furthermore provides spatial information with a higher gamma pass rate of the predicted registration error than commonly used spatial quality assurance criteria. CONCLUSIONS: Intensity-based quality assurance criteria can provide the required confidence in decisions about using mono-modal registrations in clinical workflows. They thereby enable automated quality assurance for deformable image registration in adaptive radiotherapy treatments
Real-time auto-adaptive margin generation for MLC-tracked radiotherapy.
In radiotherapy, abdominal and thoracic sites are candidates for performing motion tracking. With real-time control it is possible to adjust the multileaf collimator (MLC) position to the target position. However, positions are not perfectly matched and position errors arise from system delays and complicated response of the electromechanic MLC system. Although, it is possible to compensate parts of these errors by using predictors, residual errors remain and need to be compensated to retain target coverage. This work presents a method to statistically describe tracking errors and to automatically derive a patient-specific, per-segment margin to compensate the arising underdosage on-line, i.e. during plan delivery. The statistics of the geometric error between intended and actual machine position are derived using kernel density estimators. Subsequently a margin is calculated on-line according to a selected coverage parameter, which determines the amount of accepted underdosage. The margin is then applied onto the actual segment to accommodate the positioning errors in the enlarged segment. The proof-of-concept was tested in an on-line tracking experiment and showed the ability to recover underdosages for two test cases, increasing [Formula: see text] in the underdosed area about [Formula: see text] and [Formula: see text], respectively. The used dose model was able to predict the loss of dose due to tracking errors and could be used to infer the necessary margins. The implementation had a running time of 23 ms which is compatible with real-time requirements of MLC tracking systems. The auto-adaptivity to machine and patient characteristics makes the technique a generic yet intuitive candidate to avoid underdosages due to MLC tracking errors
French national cohort of first use of dalbavancin: a high proportion of off-label use
Dalbavancin is a glycopeptide antibiotic with a long half-life, recently marketed in Europe for skin and soft tissue infections (SSTI), but real-life use is not well-known. We aimed to describe all first prescriptions in France over an 18-month period. We performed a retrospective study on all adult patients who received at least one dose of dalbavancin from July 1, 2017 to September 31, 2018. Data were collected thanks to a standard questionnaire. Failure was defined as: persistent or reappearance of signs of infection; and/or switch to suppressive antibiotic treatment; and/or death from infection. We included 75 patients from 29 French hospitals. Main indications were bone and joint infections (BJIs) (64.0%), endocarditis (25.3%), and SSTIs (17.3%). Main bacteria involved were: Staphylococcus aureus (51.4%), including methicillin-resistant S. aureus (MRSA) (19.4%); and coagulase-negative staphylococci (CNS) (44.4%). Median MICs for staphylococci to vancomycin and dalbavancin ranged from 0.875 mg/L to 2.0 mg/L, and 0.040 mg/L to 0.064 mg/L, respectively. Dalbavancin was used after a mean of 2.3 ± 1.2 lines of antimicrobial treatment. Main treatment regimens for dalbavancin were a weekly 2-dose regimen (1500mg each) in 38 (53.2%) cases, and a single-dose regimen (1500mg) in 13 (18.3%) cases. Overall, at the patients\u27 last visit, clinical cure was observed in 54/72 patients, while failure was found in 14/72 patients. First uses of dalbavancin in France were mostly off-label. Most of them were due to BJIs, and often as rescue therapy for severe infections. Even in off-label situations, dalbavancin seems safe and effective
Evaluation of a robotic technique for transrectal MRI-guided prostate biopsies
Item does not contain fulltextOBJECTIVES: To evaluate the accuracy and speed of a novel robotic technique as an aid to perform magnetic resonance image (MRI)-guided prostate biopsies on patients with cancer suspicious regions. METHODS: A pneumatic controlled MR-compatible manipulator with 5 degrees of freedom was developed in-house to guide biopsies under real-time imaging. From 13 consecutive biopsy procedures, the targeting error, biopsy error and target displacement were calculated to evaluate the accuracy. The time was recorded to evaluate manipulation and procedure time. RESULTS: The robotic and manual techniques demonstrated comparable results regarding mean targeting error (5.7 vs 5.8 mm, respectively) and mean target displacement (6.6 vs 6.0 mm, respectively). The mean biopsy error was larger (6.5 vs 4.4 mm) when using the robotic technique, although not significant. Mean procedure and manipulation time were 76 min and 6 min, respectively using the robotic technique and 61 and 8 min with the manual technique. CONCLUSIONS: Although comparable results regarding accuracy and speed were found, the extended technical effort of the robotic technique make the manual technique - currently - more suitable to perform MRI-guided biopsies. Furthermore, this study provided a better insight in displacement of the target during in vivo biopsy procedures.01 februari 201
Strategies for Treating Latent Multiple-Drug Resistant Tuberculosis: A Decision Analysis
BACKGROUND: The optimal treatment for latent multiple-drug resistant tuberculosis infection remains unclear. In anticipation of future clinical trials, we modeled the expected performance of six potential regimens for treatment of latent multiple-drug resistant tuberculosis. METHODS: A computerized Markov model to analyze the total cost of treatment for six different regimens: Pyrazinamide/ethambutol, moxifloxacin monotherapy, moxifloxacin/pyrazinamide, moxifloxacin/ethambutol, moxifloxacin/ethionamide, and moxifloxacin/PA-824. Efficacy estimates were extrapolated from mouse models and examined over a wide range of assumptions. RESULTS: In the base-case, moxifloxacin monotherapy was the lowest cost strategy, but moxifloxacin/ethambutol was cost-effective at an incremental cost-effectiveness ratio of $21,252 per quality-adjusted life-year. Both pyrazinamide-containing regimens were dominated due to their toxicity. A hypothetical regimen of low toxicity and even modest efficacy was cost-effective compared to "no treatment." CONCLUSION: In our model, moxifloxacin/ethambutol was the preferred treatment strategy under a wide range of assumptions; pyrazinamide-containing regimens fared poorly because of high rates of toxicity. Although more data are needed on efficacy of treatments for latent MDR-TB infection, data on toxicity and treatment discontinuation, which are easier to obtain, could have a substantial impact on public health practice
Distinct Genetic Loci Control Plasma HIV-RNA and Cellular HIV-DNA Levels in HIV-1 Infection: The ANRS Genome Wide Association 01 Study
Previous studies of the HIV-1 disease have shown that HLA and Chemokine receptor genetic variants influence disease progression and early viral load. We performed a Genome Wide Association study in a cohort of 605 HIV-1-infected seroconverters for detection of novel genetic factors that influence plasma HIV-RNA and cellular HIV-DNA levels. Most of the SNPs strongly associated with HIV-RNA levels were localised in the 6p21 major histocompatibility complex (MHC) region and were in the vicinity of class I and III genes. Moreover, protective alleles for four disease-associated SNPs in the MHC locus (rs2395029, rs13199524, rs12198173 and rs3093662) were strikingly over-represented among forty-five Long Term HIV controllers. Furthermore, we show that the HIV-DNA levels (reflecting the HIV reservoir) are associated with the same four SNPs, but also with two additional SNPs on chromosome 17 (rs6503919; intergenic region flanked by the DDX40 and YPEL2 genes) and chromosome 8 (rs2575735; within the Syndecan 2 gene). Our data provide evidence that the MHC controls both HIV replication and HIV reservoir. They also indicate that two additional genomic loci may influence the HIV reservoir
- …