22,768 research outputs found
Stability of naked singularities and algebraically special modes
We show that algebraically special modes lead to the instability of naked
singularity spacetimes with negative mass. Four-dimensional negative-mass
Schwarzschild and Schwarzschild-de Sitter spacetimes are unstable. Stability of
the Schwarzschild-anti-de Sitter spacetime depends on boundary conditions. We
briefly discuss the generalization of these results to charged and rotating
singularities.Comment: 6 pages. ReVTeX4. v2: Minor improvements and extended discussion on
boundary conditions. Version to appear in Phys. Rev.
A geometrical non-linear model for cable systems analysis
Cable structures are commonly studied with simplified analytical equations. The evaluation of the accuracy of these equations, in terms of equilibrium geometry configuration and stress distribution was performed for standard cables examples. A three-dimensional finite element analysis (hereafter FEA) procedure based on geometry-dependent stiffness coefficients was developed. The FEA follows a classical procedure in finite element programs, which uses an iterative algorithm, in terms of displacements. The theory is based on a total Lagrange formulation using Green-Lagrange strain. Pure Newton-Raphson procedure was employed to solve the non-linear equations. The results show that the rigid character of the catenary’s analytical equation, introduce errors when compared with the FEA
A Neural Network model with Bidirectional Whitening
We present here a new model and algorithm which performs an efficient Natural
gradient descent for Multilayer Perceptrons. Natural gradient descent was
originally proposed from a point of view of information geometry, and it
performs the steepest descent updates on manifolds in a Riemannian space. In
particular, we extend an approach taken by the "Whitened neural networks"
model. We make the whitening process not only in feed-forward direction as in
the original model, but also in the back-propagation phase. Its efficacy is
shown by an application of this "Bidirectional whitened neural networks" model
to a handwritten character recognition data (MNIST data).Comment: 16page
Wave Equations for Classical Two-Component Proca Fields in Curved Spacetimes with Torsionless Affinities
The world formulation of the full theory of classical Proca fields in
generally relativistic spacetimes is concisely reviewed and the entire set of
pertinent field equations is transcribed in a straightforward way into the
framework of one of the Infeld-van der Waerden formalisms. Some well-known
calculational techniques are then utilized for deriving the wave equations that
control the propagation of the fields allowed for. It appears that no
interaction couplings between such fields and electromagnetic curvatures are
carried by the wave equations at issue. What results is, in effect, that the
only interactions which ultimately occur in the theoretical context under
consideration involve strictly Proca fields and wave functions for gravitons.Comment: Many improvements on the paper have still been made. In particular,
its title has been modified so as to conform further to one of its main aim
- …