319 research outputs found

    Violating Bell inequality using weak coherent states

    Full text link
    We present an experimental investigation of two-photon interference using a continuous-wave laser. We demonstrate the violation of the CHSH inequality using the phase randomized weak coherent states from a continuous wave laser. Our implementation serves as an approach to reveal the quantum nature of a source that is considered to be a classical source.Comment: 6 pages, 2 figure

    Nonlinear vibration of the spiral bevel gear under periodic torque considering multiple elastic deformation evaluations due to different bearing supports

    Get PDF
    This paper investigates two parameters effect on vibrational responses of the spiral bevel gear. Changing the gear system overall stiffness (GSOS) considering elastic deformation and periodic torques are the two parameters which are represented as the main goals of this study. In order to investigate the effects of shaft stiffness and elastic deformation, two different cases with different support locations are considered. The first case is presented by locating the support close to the gear, and in the latter one, the distance between gear and support is increased. Besides, to study the effect of torque, two main types are considered: constant and periodic excitation torque. To illustrate the dynamic behavior, the governing differential equations are solved numerically according to the Runge-Kutta method. The equations are nonlinear due to backlash and time-varying coefficients as the results of GSOS variation. Vibrational phenomena are illustrated by means of bifurcation diagrams, RMS, and Poincare maps. Particular vibrational behaviors such as "chaos" and "period-doubling" phenomena are illustrated with details. By investigating the effect of shaft stiffness, results show that when the support is far away from gear, the vibration response increased by 67.5%. Moreover, while the input torque is constant, the support movement does not cause undesirable responses such as chaotic or period-doubling responses. The periodic torque causes undesirable responses such as chaos and bifurcation and period-doubling responses

    Nonlinear vibration of crowned gear pairs considering the effect of Hertzian contact stiffness

    Get PDF
    This study aims to analyze the influence of lead crowning modification of teeth on the vibration behavior of a spur gear pair. Two dynamic rotational models including an uncrowned and crowned gear are examined. Hertzian mesh stiffness is computed using tooth contact analysis in quasi-static state along a complete mesh cycle of teeth mesh. The dynamic orbits of the system are observed using some useful attractors which expand our understanding about the influence of crown modification on the vibration behavior of the gear pair. Nonlinear impact damper consists of non-integer compliance exponents identify energy dissipation of the system beneath the surface layer. By augmenting tooth crown modification, the surface penetration increases and consequently normal pressure of the contact area becomes noticeable. Finally, the results show modification prevents gear pair to experience period doubling bifurcation as the numerical results proved. Using this new method in dynamic analysis of contact, broaden the new horizon in analyzing of the surface of bodies in contact

    Application of linear and nonlinear vibration absorbers for the nonlinear beam under moving load

    Get PDF
    Recently, a large amount of studies have been related to nonlinear systems with multi-degrees of freedom as well as continuous systems. The purpose of this paper is to optimize passive vibration absorbers in linear and nonlinear states for an Euler-Bernoulli beam with a nonlinear vibratory behavior under concentrated moving load. The goal parameter in the optimization is maximum deflection of the beam. The large deformation for beam modeling is considered, i.e. the relation between strains and deflections is nonlinear. The force magnitude and beam length are two effective factors for the beam deflection. Vibration absorber with linear damping and linear or nonlinear stiffness is also considered in this manuscript. The results show that, for normal forces and short beams, linear and nonlinear models have similar behaviors, while surveying nonlinear behavior is necessary by increasing the force and length of the beam, i.e. large deflections. Moreover, the difference between linear and nonlinear beam models for regular force magnitudes and beam lengths is negligible. For higher loads and longer beams, beam model nonlinearity can be important. Results demonstrate that,in the presented numerical values (train bridge application) for cubic nonlinear vibration absorber, there are two optimal locations for vibration absorber installation: one inclined from the middle of the beam to the direction of moving loads and the second which is more interestingly inclined from the middle of the beam to moving loads in the opposite direction. Moreover, depending on the model's numerical parameters, for short beams, linear vibration absorber is more effective, while for long beams, cubic nonlinear beam behaves better than the linear one

    Nonlinear structures: explosive, soliton and shock in a quantum electron-positron-ion magnetoplasma

    Full text link
    Theoretical and numerical studies are performed for the nonlinear structures (explosive, solitons and shock) in quantum electron-positron-ion magnetoplasmas. For this purpose, the reductive perturbation method is employed to the quantum hydrodynamical equations and the Poisson equation, obtaining extended quantum Zakharov-Kuznetsov equation. The latter has been solved using the generalized expansion method to obtain a set of analytical solutions, which reflect the possibility of the propagation of various nonlinear structures. The relevance of the present investigation to the white dwarfs is highlighted.Comment: 7 figure

    Effects of long-term exposure to amoxicillin residues on stress resistance and body compositions of Penaeus vannamei

    Get PDF
    Background and Objective: Occurrence of the pharmaceutical active residues (particularly antibiotics) threatens the health of the environment and human society. Therefore, this research aimed to investigate the impacts of the Amoxicillin (AMX) residues on resistance to environmental stress and biochemical compositions of the body in Penaeus vannamei. Materials and Methods: Six-hundred specimens with a mean (±SD) weight and total length of 9.23±1.77 g and 9.28±0.73 cm were randomly experimented in four triplicate treatments, namely T1(control): without AMX residues in a rearing environment, T2: 100 μg/L AMX residues concentration in water, T3: 300 μg/L and T4: 500 μg/L for 60 days. At the end of the experimental trial, five specimens for biochemical body composition analyses were separately sampled. Ten shrimps from each treatment were also randomly selected and exposed to 50 ppt salinity stress for 48 hours, and then survival rates were computed. Results: Body composition analyses showed that moisture and protein not differed among the treatments (p>0.05), while fat in T2 (28.29±5.50) was significantly more than in others (p<0.05). The lowest values of ash were obtained in T1 and T4, and they differed with T2 and T3 (p<0.05). The highest survival rate of shrimps exposed to salinity stress (50 ppt in 48 h) was observed in T2 and T3, in contrast, the lowest value was recorded for T4 (p<0.01). Conclusion: Findings of the present research indicate that the occurrence of high doses of AMX residues pollution in the rearing water affects the stress resistance of P. vannamei which can be due to disruption of protein and fat metabolisms in the shrimp body

    Quick algorithms for real-time discrimination of neutrons and gamma rays

    Get PDF
    Several new methods for the digital discrimination of neutrons and gamma-rays in a mixed radiation field are presented. The methods introduced discriminate neutrons and gamma rays successfully in the digital domain. They are mathematically simple and exploit samples during the life time of the pulse, hence appropriate for field measurements. All these methods are applied to a set of mixed neutron and photon signals from a stilbene scintillator and their discrimination qualities are compared.V článku je prezentováno několik nových metod pro digitální diskriminace neutronů a gama záření ve směsném radiačním poli. Klasické metody diskriminace neutronů a gama záření pracují úspěšně v digitální doméně. Jsou matematicky jednoduché a využívat vzorků během doby trvání impulsu (odezvy) a jsou tedy vhodné pro měření v terénu. Všechny tyto metody jsou aplikovány na řadu odezev smíšených polí neutronového a fotonového záření ze scintilátoru typu stilben a jejich separační vlastnosti jsou porovnány.Several new methods for the digital discrimination of neutrons and gamma-rays in a mixed radiation field are presented. The methods introduced discriminate neutrons and gamma rays successfully in the digital domain. They are mathematically simple and exploit samples during the life time of the pulse, hence appropriate for field measurements. All these methods are applied to a set of mixed neutron and photon signals from a stilbene scintillator and their discrimination qualities are compared

    Anisotropic Inflation from Charged Scalar Fields

    Full text link
    We consider models of inflation with U(1) gauge fields and charged scalar fields including symmetry breaking potential, chaotic inflation and hybrid inflation. We show that there exist attractor solutions where the anisotropies produced during inflation becomes comparable to the slow-roll parameters. In the models where the inflaton field is a charged scalar field the gauge field becomes highly oscillatory at the end of inflation ending inflation quickly. Furthermore, in charged hybrid inflation the onset of waterfall phase transition at the end of inflation is affected significantly by the evolution of the background gauge field. Rapid oscillations of the gauge field and its coupling to inflaton can have interesting effects on preheating and non-Gaussianities.Comment: minor changes, references added, figures are modified, conforms JCAP published versio

    Two kinds of rogue waves of the general nonlinear Schr\"odinger equation with derivative

    Full text link
    In this letter,the designable integrability(DI) of the variable coefficient derivative nonlinear Schr\"odinger equation (VCDNLSE) is shown by construction of an explicit transformation which maps VCDNLSE to the usual derivative nonlinear Schr\"odinger equation(DNLSE). One novel feature of VCDNLSE with DI is that its coefficients can be designed artificially and analytically by using transformation. What is more, from the rogue wave and rational traveling solution of the DNLSE, we get two kinds of rogue waves of the VCDNLSE by this transformation. One kind of rogue wave has vanishing boundary condition, and the other non-vanishing boundary condition. The DI of the VCDNLSE also provides a possible way to control the profile of the rogue wave in physical experiments.Comment: 8 pages, 5 figure
    • …
    corecore