368 research outputs found

    Efficacy of Hi-Lo Evac Endotracheal Tube in Prevention of Ventilator-Associated Pneumonia in Mechanically Ventilated Poisoned Patients

    Get PDF
    Background. Ventilator-associated pneumonia (VAP) is the most common health care-associated infection. To prevent this complication, aspiration of subglottic secretions using Hi-Lo Evac endotracheal tube (Evac ETT) is a recommended intervention. However, there are some reports on Evac ETT dysfunction. We aimed to compare the incidence of VAP (per ventilated patients) in severely ill poisoned patients who were intubated using Evac ETT versus conventional endotracheal tubes (C-ETT) in our toxicology ICU. Materials and Methods. In this clinical randomized trial, 91 eligible patients with an expected duration of mechanical ventilation of more than 48 hours were recruited and randomly assigned into two groups: (1) subglottic secretion drainage (SSD) group who were intubated by Evac ETT (n = 43) and (2) control group who were intubated by C-ETT (n = 48). Results. Of the 91 eligible patients, 56 (61.5) were male. VAP was detected in 24 of 43 (55.8) patients in the case group and 23 of 48 (47.9) patients in the control group (P = 0.45). The most frequently isolated microorganisms were S. aureus (54.10) and Acinetobacter spp. (19.68). The incidence of VAP and ICU length of stay were not significantly different between the two groups, but duration of intubation was statistically different and was longer in the SSD group. Mortality rate was less in SSD group but without a significant difference (P = 0.68). Conclusion. The SSD procedure was performed intermittently with one-hour intervals using 10 mL syringe. Subglottic secretion drainage does not significantly reduce the incidence of VAP in patients receiving MV. This strategy appears to be ineffective in preventing VAP among ICU patients. © 2016 Ahmad Ghoochani Khorasani et al

    The use of decision support to measure documented adherence to a national imaging quality measure

    Get PDF
    RATIONALE AND OBJECTIVES: Present methods for measuring adherence to national imaging quality measures often require a resource-intensive chart review. Computerized decision support systems may allow for automated capture of these data. We sought to determine the feasibility of measuring adherence to a national quality measure (NQM) regarding computed tomography pulmonary angiograms (CTPAs) for pulmonary embolism using measure-targeted clinical decision support and whether the associated increased burden of data captured required by this system would affect the use and yield of CTs. MATERIALS AND METHODS: This institutional review board-approved prospective cohort study enrolled patients from September 1, 2009, through November 30, 2011, in the emergency department (ED) of a 776-bed quaternary-care adults-only academic medical center. Our intervention consisted of an NQM-targeted clinical decision support tool for CTPAs, which required mandatory input of the Wells criteria and serum D-dimer level. The primary outcome was the documented adherence to the quality measure prior and subsequent to the intervention, and the secondary outcomes were the use and yield of CTPAs. RESULTS: A total of 1209 patients with suspected PE (2.0% of 58,795 ED visits) were imaged by CTPA during the 12-month control period, and 1212 patients were imaged in the 12 months after the quarter during which the intervention was implemented (2.0% of 59,478 ED visits, P = .84). Documented baseline adherence to the NQM was 56.9% based on a structured review of the provider notes. After implementation, documented adherence increased to 75.6% (P \u3c .01). CTPA yield remained unchanged and was 10.4% during the control period and 10.1% after the intervention (P = .88). CONCLUSIONS: Implementation of a clinical decision support tool significantly improved documented adherence to an NQM, enabling automated measurement of provider adherence to evidence without the need for resource-intensive chart review. It did not adversely affect the use or yield of CTPAs

    A generic scope actuation system for flexible endoscopes

    Get PDF
    Background: A scope actuation system assists a surgeon in steering a scope for navigating an operative field during an interventional or diagnostic procedure. Each system is tailored for a specific surgical procedure. The development of a generic scope actuation system could assist various laparoscopic and endoscopic procedures. This has the potential to reduce the deployment and maintenance costs for a hospital, making it more accessible for clinical usage. Methods: A modular actuation system (for maneuvering rigid laparoscopes) was adapted to enable incorporation of flexible endoscopes. The design simplifies the installation and disassembly processes. User studies were conducted to assess the ability of the system to focus onto a diagnostic area, and to navigate during a simulated esophagogastroduodenoscopy procedure. During the studies, the endoscope was maneuvered with (robotic mode) and without (manual mode) the actuation system to navigate the endoscope’s focus on a predefined track. Results: Results show that the robotic mode performed better than the manual mode on all the measured performance parameters including (a) the total duration to traverse a track, (b) the percentage of time spent outside a track while traversing, and (c) the number of times the scope focus shifts outside the track. Additionally, robotic mode also reduced the perceived workload based on the NASA-TLX scale. Conclusions: The proposed scope actuation system enhances the maneuverability of flexible endoscopes. It also lays the groundwork for future development of modular and generic scope assistant systems that can be used in both laparoscopic and endoscopic procedures

    Excitonic Emission of Monolayer Semiconductors Near-Field Coupled to High-Q Microresonators.

    Get PDF
    We present quantum yield measurements of single layer WSe2 (1L-WSe2) integrated with high-Q ( Q > 106) optical microdisk cavities, using an efficient (η > 90%) near-field coupling scheme based on a tapered optical fiber. Coupling of the excitonic emission is achieved by placing 1L-WSe2 in the evanescent cavity field. This preserves the microresonator high intrinsic quality factor ( Q > 106) below the bandgap of 1L-WSe2. The cavity quantum yield is QYc ≈ 10-3, consistent with operation in the broad emitter regime (i.e., the emission lifetime of 1L-WSe2 is significantly shorter than the bare cavity decay time). This scheme can serve as a precise measurement tool for the excitonic emission of layered materials into cavity modes, for both in plane and out of plane excitation

    Investigating the Effect of Increasing Nano Cellulose to Diesel Fuel on Emission and Performance of Internal Combustion Engine

    Get PDF
    IntroductionToday, the number of diesel engines is increasing due to their high efficiency and low greenhouse gases. In the present study, the effect of adding nano cellulose as nanoparticles to diesel fuel on the performance parameters and emissions of diesel engine was investigated. Nano cellulose was provided by the Nano Novin Company in Sari. Nano cellulose values were considered at 3 levels of zero, 25 ppm and 75 ppm. Also, the tests were performed at 3 engine speed of 1600, 2000 and 2400 rpm in full load mode.Materials and MethodsIn this study, nanocellulose was used as nanoparticles to add to diesel and to evaluate the performance and emission parameters of the engine. To prevent the deposition of nano cellulose in diesel fuel, jelly type nano cellulose was used. The samples were named after adding different amounts of nano cellulose, abbreviated D100N0, D100N25 and D100N75. D100 means 100% pure diesel and N means different amounts of nano cellulose with different amounts. Ultrasound was used to obtain homogeneous samples. About 3 liters were prepared from each sample so that it could be used for at least 3 repetitions. The required tests were performed at three different speeds of 1600, 2000 and 2400 rpm in full load mode. The necessary equipment was used to measure the performance parameters and air emissions, including diesel engine connected to the dynamometer, emissions measuring device, fuel system and control room (to apply the load and provide conditions for each treatment and data collection). The air-cooled, four-stroke, compression-ignition single-cylinder engine made by the Italian company Lombardini was used. The D400 eddy current dynamometer made in Germany was used. The ability to measure power by this dynamometer is a maximum of 21 hp, a maximum speed of 10,000 rpm and a maximum torque of 80 N.m. To measure of emissions, the MAHA MGT5 emissions meter was used. This device is able to measure the values of CO, CO2, NOX, O2 and UHC.Results and DiscussionThe results showed that increasing engine speed in all fuel combinations increased engine power, specific fuel consumption, carbon monoxide and unburned hydrocarbons and decreased torque. Also, increasing the amount of nano cellulose per engine speed increased the amount of power and torque, but reduced the specific fuel consumption, carbon monoxide and unburned hydrocarbons. The amount of NOX increased with increasing engine speed, but at each engine speed the addition of 25 ppm nanocellulose to pure diesel significantly increased the amount of NOX. But at low speed, increasing 75 ppm nanocellulose to pure diesel reduced the amount of NOX.ConclusionThe results of this study showed that the addition of nano cellulose as nanoparticles can improve the performance of diesel engines and also reduce the amount of emissions gases emitted from the engine. The results also showed that increasing 25ppm nanocellulose had a greater effect on engine performance. But to reduce the amount of emissions, 75 ppm nanocellulose was better

    Investigation of bias current and modulation frequency dependences of detectivity of YBCO TES and the effects of coating of Cu-C composite absorber layer

    Get PDF
    Bolometric response and noise characteristics of YBCO superconductor transition edge IR detectors with relatively sharp transition and its resulting detectivity are investigated both theoretically and experimentally. The magnitude of response of a fabricated device was obtained for different bias currents and modulation frequencies. Using the measured and calculated bolometric response and noise characteristics, we found and analyzed the device detectivity versus frequency for different bias currents. The detectivity versus chopping frequency of the device did not decrease following the response strongly, due to the decrease of the noise at higher frequencies up to 1 kHz, resulting in maximum detectivity around the modulation frequency of 100 Hz. We also improved the responsivity of the device through the increase of the surface absorption by using a novel infrared absorber, which is made of a copper-carbon composite, coated in a low-temperature process. Within the modulation frequency range studied in this paper, comparison of device detectivity before and after coating is also presented. © 2009 IEEE

    Exploring corrections to the optomechanical Hamiltonian

    Get PDF
    We compare two approaches for deriving corrections to the “linear model” of cavity optomechanics, in order to describe effects that are beyond first order in the radiation pressure coupling. In the regime where the mechanical frequency is much lower than the cavity one, we compare: (I) a widely used phenomenological Hamiltonian conserving the photon number; (II) a two-mode truncation of C. K. Law’s microscopic model, which we take as the “true” system Hamiltonian. While these approaches agree at first order, the latter model does not conserve the photon number, resulting in challenging computations. We find that approach (I) allows for several analytical predictions, and significantly outperforms the linear model in our numerical examples. Yet, we also find that the phenomenological Hamiltonian cannot fully capture all high-order corrections arising from the C. K. Law model

    A composite electrodynamic mechanism to reconcile spatiotemporally resolved exciton transport in quantum dot superlattices

    Full text link
    Quantum dot (QD) solids are promising optoelectronic materials; further advancing their device functionality depends on understanding their energy transport mechanisms. The commonly invoked near-field F\"orster resonance energy transfer (FRET) theory often underestimates the exciton hopping rate in QD solids, yet no consensus exists on the underlying cause. In response, we use time-resolved ultrafast stimulated emission depletion (TRUSTED) microscopy, an ultrafast transformation of stimulated emission depletion (STED) microscopy to spatiotemporally resolve exciton diffusion in tellurium-doped CdSe-core/CdS-shell QD superlattices. We measure the concomitant time-resolved exciton energy decay due to excitons sampling a heterogeneous energetic landscape within the superlattice. The heterogeneity is quantified by single-particle emission spectroscopy. This powerful multimodal set of observables provides sufficient constraints on a kinetic Monte Carlo simulation of exciton transport to elucidate a composite transport mechanism that includes both near-field FRET and previously-neglected far-field emission/reabsorption contributions. Uncovering this mechanism offers a much-needed unified framework in which to characterize transport in QD solids and additional principles for device design.Comment: 47 pages, including supplemen

    The requirements and challenges in preventing of road traffic injury in Iran. A qualitative study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Road traffic injuries (RTIs) are a major public health problem, especially in low- and middle-income countries. Among middle-income countries, Iran has one of the highest mortality rates from RTIs. Action is critical to combat this major public health problem. Stakeholders involved in RTI control are of key importance and their perceptions of barriers and facilitators are a vital source of knowledge. The aim of this study was to explore barriers to the prevention of RTIs and provide appropriate suggestions for prevention, based on the perceptions of stakeholders, victims and road-users as regards RTIs.</p> <p>Methods</p> <p>Thirty-eight semi-structured interviews were conducted with informants in the field of RTI prevention including: police officers; public health professionals; experts from the road administrators; representatives from the General Governor, the car industry, firefighters; experts from Emergency Medical Service and the Red Crescent; and some motorcyclists and car drivers as well as victims of RTIs. A qualitative approach using grounded theory method was employed to analyze the material gathered.</p> <p>Results</p> <p>The core variable was identified as "The lack of a system approach to road-user safety". The following barriers in relation to RTI prevention were identified as: human factors; transportation system; and organizational coordination. Suggestions for improvement included education (for the general public and targeted group training), more effective legislation, more rigorous law enforcement, improved engineering in road infrastructure, and an integrated organization to supervise and coordinate preventive activities.</p> <p>Conclusion</p> <p>The major barriers identified in this study were human factors and efforts to change human behaviour were suggested by means of public education campaigns and stricter law enforcement. However, the lack of a system approach to RTI prevention was also an important concern. There is an urgent need for both an integrated system to coordinate RTI activities and prevention and a major change in stakeholders' attitudes towards RTI prevention. The focus of all activities should take place on road users' safety.</p
    corecore