4,954 research outputs found
Environmental impacts of grazed pastures
Large nitrogen (N) surplus and return of excreta-N in localised patches at high N rates in intensively grazed pasture systems markedly increases the risk of N losses to waterways and the atmosphere. Here are described the main routes of N input to grazed pastures, losses via N leaching, methane (CH4) and nitrous oxide (N2O) emissions. Furthermore farm N budgets and N use efficiency in relation to management strategies that can be applied to reduce N losses are discussed. Nitrate leaching increases exponentially with increased inputs and is closely related to urine patches, which also influence the leaching of dissolved organic N. High N2O emission rates in grazed pastures are related to fertiliser-N or N in excreta combined with compaction by animal treading. Grazing may considerably reduce CH3 emissions compared to indoor housing of cows. Pastures are occasionally cultivated due to sward deterioration followed by a rapid and extended period of N mineralization, contributing to an increased potential for losses. Good management of the pasture (e.g. reduced fertiliser input and reduced length of grazing) and of the mixed crop rotation during both the grassland and the arable phase (e.g. delayed ploughing time and a catch crop strategy) can considerably reduce the negative environmental impact of grazing. It is important to consider the whole farm system when evaluating environmental impact. In particular for green house gasses since the pasture may serve as a source of N2O and indirectly of CH3, but also as a sink of CO2 influenced by management practices on the farm
Interpretation of F106B and CV580 in-flight lightning data and form factor determination
Two topics of in-flight aircraft/lightning interaction are addressed. The first is the analysis of measured data from the NASA F106B Thunderstorm Research Aircraft and the CV580 research program run by the FAA and Wright-Patterson Air Force Base. The CV580 data was investigated in a mostly qualitative sense, while the F106B data was subjected to both statistical and quantitative analysis using linear triggered lightning finite difference models. The second main topic is the analysis of field mill data and the calibration of the field mill systems. The calibration of the F106B field mill system was investigated using an improved finite difference model of the aircraft having a spatial resolution of one-quarter meter. The calibration was applied to measured field mill data acquired during the 1985 thunderstorm season. The experimental determination of form factors useful for field mill calibration was also investigated both experimentally and analytically. The experimental effort involved the use of conducting scale models and an electrolytic tank. An analytic technique was developed to aid in the understanding of the experimental results
Observation of backflow in the switch-on dynamics of a hybrid aligned nematic
Copyright © 2004 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Applied Physics Letters 84 (2004) and may be found at http://link.aip.org/link/?APPLAB/84/46/1The optical convergent-beam technique is used to measure, in 0.3 ms steps, the response of the director in a 4.6-µm-thick ZLI-2293 filled hybrid aligned nematic cell when a 10 kHz, 7 Vrms ac voltage is applied to the cell. The total time taken for the reorientation process is 2.4 ms, with backflow observed during the first 1.5 ms after the application of the voltage. The measured director profiles show excellent agreement with theoretical profiles produced from the Leslie–Eriksen–Parodi theory using typical values for the viscosity coefficients. Fluid velocity profiles within the cell are also modeled
Backflow in the relaxation of a hybrid aligned nematic cell
Copyright © 2003 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Applied Physics Letters 82 (2003) and may be found at http://link.aip.org/link/?APPLAB/82/3156/1The optical convergent-beam technique has been used to measure the changing director profile in a 4.6 µm ZLI-2293 filled hybrid aligned nematic cell when a 7 Vrms ac voltage was removed. The relaxation process has been recorded in 0.3 ms time steps allowing the detailed director backflow occurring in the initial 9 ms of the reorientation process to be quantified. The measured tilt profiles over the 60 ms total relaxation period were compared to model tilt profiles produced using the Leslie–Eriksen–Parodi theory, and excellent agreement was found. Further analysis shows that the backflow is dominated by the viscosity coefficient η1 and the overall relaxation is governed by the coefficient γ1
Bubble, Bubble, Flow and Hubble: Large Scale Galaxy Flow from Cosmological Bubble Collisions
We study large scale structure in the cosmology of Coleman-de Luccia bubble
collisions. Within a set of controlled approximations we calculate the effects
on galaxy motion seen from inside a bubble which has undergone such a
collision. We find that generically bubble collisions lead to a coherent bulk
flow of galaxies on some part of our sky, the details of which depend on the
initial conditions of the collision and redshift to the galaxy in question.
With other parameters held fixed the effects weaken as the amount of inflation
inside our bubble grows, but can produce measurable flows past the number of
efolds required to solve the flatness and horizon problems.Comment: 30 pages, 8 figures, pdftex, minor corrections and references adde
Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Data Processing, Sky Maps, and Basic Results
We present new full-sky temperature and polarization maps in five frequency
bands from 23 to 94 GHz, based on data from the first five years of the WMAP
sky survey. The five-year maps incorporate several improvements in data
processing made possible by the additional years of data and by a more complete
analysis of the instrument calibration and in-flight beam response. We present
several new tests for systematic errors in the polarization data and conclude
that Ka band data (33 GHz) is suitable for use in cosmological analysis, after
foreground cleaning. This significantly reduces the overall polarization
uncertainty. With the 5 year WMAP data, we detect no convincing deviations from
the minimal 6-parameter LCDM model: a flat universe dominated by a cosmological
constant, with adiabatic and nearly scale-invariant Gaussian fluctuations.
Using WMAP data combined with measurements of Type Ia supernovae and Baryon
Acoustic Oscillations, we find (68% CL uncertainties): Omega_bh^2 = 0.02267 \pm
0.00059, Omega_ch^2 = 0.1131 \pm 0.0034, Omega_Lambda = 0.726 \pm 0.015, n_s =
0.960 \pm 0.013, tau = 0.084 \pm 0.016, and Delta_R^2 = (2.445 \pm 0.096) x
10^-9. From these we derive: sigma_8 = 0.812 \pm 0.026, H_0 = 70.5 \pm 1.3
km/s/Mpc, z_{reion} = 10.9 \pm 1.4, and t_0 = 13.72 \pm 0.12 Gyr. The new limit
on the tensor-to-scalar ratio is r < 0.22 (95% CL). We obtain tight,
simultaneous limits on the (constant) dark energy equation of state and spatial
curvature: -0.14 < 1+w < 0.12 and -0.0179 < Omega_k < 0.0081 (both 95% CL). The
number of relativistic degrees of freedom (e.g. neutrinos) is found to be
N_{eff} = 4.4 \pm 1.5, consistent with the standard value of 3.04. Models with
N_{eff} = 0 are disfavored at >99.5% confidence.Comment: 46 pages, 13 figures, and 7 tables. Version accepted for publication,
ApJS, Feb-2009. Includes 5-year dipole results and additional references.
Also available at
http://lambda.gsfc.nasa.gov/product/map/dr3/map_bibliography.cf
Accelerated sources in de Sitter spacetime and the insufficiency of retarded fields
The scalar and electromagnetic fields produced by the geodesic and uniformly
accelerated discrete charges in de Sitter spacetime are constructed by
employing the conformal relation between de Sitter and Minkowski space.
A special attention is paid to new effects arising in spacetimes which, like
de Sitter space, have spacelike conformal infinities. Under the presence of
particle and event horizons, purely retarded fields (appropriately defined)
become necessarily singular or even cannot be constructed at the "creation
light cones" -- future light cones of the "points" at which the sources "enter"
the universe. We construct smooth (outside the sources) fields involving both
retarded and advanced effects, and analyze the fields in detail in case of (i)
scalar monopoles, (ii) electromagnetic monopoles, and (iii) electromagnetic
rigid and geodesic dipoles.Comment: 36 pages, 5 figures, LaTex2e; minor misprints corrected, one
reference added and some terminology change
A Chandrasekhar Mass Progenitor for the Type Ia Supernova Remnant 3C 397 from The Enhanced Abundances of Nickel and Manganese
Despite decades of intense efforts, many fundamental aspects of Type Ia
supernova (SNe Ia) remain elusive. One of the major open questions is whether
the mass of the exploding white dwarf (WD) is close to the Chandrasekhar limit.
Here we report the detection of strong K-shell emission from stable Fe-peak
elements in the Suzaku X-ray spectrum of the Type Ia supernova remnant (SNR) 3C
397. The high Ni/Fe and Mn/Fe mass ratios (0.11-0.24 and 0.018-0.033,
respectively) in the hot plasma component that dominates the K-shell emission
lines indicate a degree of neutronization in the SN ejecta which can only be
achieved by electron captures in the dense cores of exploding WDs with a
near-Chandrasekhar mass. This suggests a single-degenerate origin for 3C 397,
since Chandrasekhar mass progenitors are expected naturally if the WD accretes
mass slowly from a companion. Together with other results supporting the
double-degenerate scenario, our work adds to the mounting evidence that both
progenitor channels make a significant contribution to the SN Ia rate in
star-forming galaxies.Comment: Accepted by ApJL; 6 pages with 4 figures and 1 tabl
Primordial statistical anisotropy generated at the end of inflation
We present a new mechanism for generating primordial statistical anisotropy
of curvature perturbations. We introduce a vector field which has a non-minimal
kinetic term and couples with a waterfall field in hybrid inflation model. In
such a system, the vector field gives fluctuations of the end of inflation and
hence induces a subcomponent of curvature perturbations. Since the vector has a
preferred direction, the statistical anisotropy could appear in the
fluctuations. We present the explicit formula for the statistical anisotropy in
the primordial power spectrum and the bispectrum of curvature perturbations.
Interestingly, there is the possibility that the statistical anisotropy does
not appear in the power spectrum but does appear in the bispectrum. We also
find that the statistical anisotropy provides the shape dependence to the
bispectrum.Comment: 9 pages, This version supersedes the JCAP version. Minor revision
New Evidence for Efficient Collisionless Heating of Electrons at the Reverse Shock of a Young Supernova Remnant
Although collisionless shocks are ubiquitous in astrophysics, certain key
aspects of them are not well understood. In particular, the process known as
collisionless electron heating, whereby electrons are rapidly energized at the
shock front, is one of the main open issues in shock physics. Here we present
the first clear evidence for efficient collisionless electron heating at the
reverse shock of Tycho's supernova remnant (SNR), revealed by Fe-K diagnostics
using high-quality X-ray data obtained by the Suzaku satellite. We detect
K-beta (3p->1s) fluorescence emission from low-ionization Fe ejecta excited by
energetic thermal electrons at the reverse shock front, which peaks at a
smaller radius than Fe K-alpha (2p->1s) emission dominated by a relatively
highly-ionized component. Comparison with our hydrodynamical simulations
implies instantaneous electron heating to a temperature 1000 times higher than
expected from Coulomb collisions alone. The unique environment of the reverse
shock, which is propagating with a high Mach number into rarefied ejecta with a
low magnetic field strength, puts strong constraints on the physical mechanism
responsible for this heating, and favors a cross-shock potential created by
charge deflection at the shock front. Our sensitive observation also reveals
that the reverse shock radius of this SNR is about 10% smaller than the
previous measurement using the Fe K-alpha morphology from the Chandra
observations. Since strong Fe K-beta fluorescence is expected only from
low-ionization plasma where Fe ions still have many 3p electrons, this feature
is key to diagnosing the plasma state and distribution of the immediate
postshock ejecta in a young SNR.Comment: 7 pages, 9 figures, resubmitted to ApJ with minor changes following
the referee repor
- …