19,680 research outputs found

    Modern Aerocapture Guidance to Enable Reduced-Lift Vehicles at Neptune

    Get PDF
    Aerocapture is covered extensively in the literature as means of achieving orbital insertion with dramatic mass-saving results compared to fully-propulsive systems. One of the primary obstacles facing aerocapture is the inherent uncertainty associated with passing through a planets upper atmosphere. In-flight dispersions due to delivery errors, environment variables, and aerodynamic performance impose a large flight envelope. System studies for aerocapture often select high lift-to-drag ratios to compensate for these uncertainties. However, modern predictor-corrector guidance strategies have shown promise in recent years to provide robust control schemes in-situ. These algorithms do not rely on a pre-calculated reference trajectory and instead employ a numerical optimizer to continuously solve nonlinear equations of motion each guidance cycle. Numerical predictor-corrector strategies may provide considerable accuracy over heritage guidance schemes. The goal of this study is reproduce a landmark study of Neptune aerocapture and apply modern guidance to illustrate relative performance improvements and cost-saving potential. Capture constraints based on the theoretical corridor width are considered. Results indicate that heritage vehicles with moderate lift-to-drag ratios, lower than previous studies have indicated, may prove viable for aerocapture at Neptune

    The young cluster NGC 2282 : a multi-wavelength perspective

    Full text link
    We present the analysis of the stellar content of NGC~2282, a young cluster in the Monoceros constellation, using deep optical BVIBVI and IPHAS photometry along with infrared (IR) data from UKIDSS and SpitzerSpitzer-IRAC. Based on the stellar surface density analysis using nearest neighborhood method, the radius of the cluster is estimated as ∼\sim 3.15\arcmin. From optical spectroscopic analysis of 8 bright sources, we have classified three early B-type members in the cluster, which includes, HD 289120, a previously known B2V type star, a Herbig Ae/Be star (B0.5 Ve) and a B5 V star. From spectrophotometric analyses, the distance to the cluster has been estimated as ∼\sim 1.65 kpc. The KK-band extinction map is estimated using nearest neighborhood technique, and the mean extinction within the cluster area is found to be AV_V ∼\sim 3.9 mag. Using IR colour-colour criteria and Hα_\alpha-emission properties, we have identified a total of 152 candidate young stellar objects (YSOs) in the region, of which, 75 are classified as Class II, 9 are Class I YSOs. Our YSO catalog also includes 50 Hα_\alpha-emission line sources, identified using slitless spectroscopy and IPHAS photometry data. Based on the optical and near-IR colour-magnitude diagram analyses, the cluster age has been estimated to be in the range of 2 −- 5 Myr, which is in agreement with the estimated age from disc fraction (∼\sim 58\%). Masses of these YSOs are found to be ∼\sim 0.1−-2.0 M⊙_\odot. Spatial distribution of the candidate YSOs shows spherical morphology, more or less similar to the surface density map.Comment: 16 pages, 19 Figure

    The Large Magellanic Cloud: A power spectral analysis of Spitzer images

    Full text link
    We present a power spectral analysis of Spitzer images of the Large Magellanic Cloud. The power spectra of the FIR emission show two different power laws. At larger scales (kpc) the slope is ~ -1.6, while at smaller ones (tens to few hundreds of parsecs) the slope is steeper, with a value ~ -2.9. The break occurs at a scale around 100-200 pc. We interpret this break as the scale height of the dust disk of the LMC. We perform high resolution simulations with and without stellar feedback. Our AMR hydrodynamic simulations of model galaxies using the LMC mass and rotation curve, confirm that they have similar two-component power-laws for projected density and that the break does indeed occur at the disk thickness. Power spectral analysis of velocities betrays a single power law for in-plane components. The vertical component of the velocity shows a flat behavior for large structures and a power law similar to the in-plane velocities at small scales. The motions are highly anisotropic at large scales, with in-plane velocities being much more important than vertical ones. In contrast, at small scales, the motions become more isotropic.Comment: 8 pages, 4 figures, talk presented at "Galaxies and their Masks", celebrating Ken Freeman's 70-th birthday, Sossusvlei, Namibia, April 2010. To be published by Springer, New York, editors D.L. Block, K.C. Freeman, & I. Puerar

    Evidence of mobile carriers with Charge Ordering gap in Epitaxial Pr0.625_{0.625}Ca0.375_{0.375}MnO3_{3} Thin Films

    Get PDF
    Epitaxial thin films of charge-ordered Pr0.625_{0.625}Ca0.375_{0.375}MnO3_{3} have been studied using variable temperature Scanning tunneling microscopy and spectroscopy (STM/STS). The as grown films were found to be granular while the annealed films show atomic terraces at all temperatures and are found to be electronically homogeneous in 78-300K temperature range. At high temperatures (T>>TCO≈_{CO}\approx 230 K) the local tunnel spectra of the annealed films show a depression in the density of states (DOS) near Fermi energy implying a pseudogap with a significant DOS at EF_F. The gap feature becomes more robust with cooling with a sharp jump in DOS at EF_F at TCO_{CO} and with a gap value of ∼\sim0.3 eV at 78K. At low temperatures we find a small but finite DOS at EF_F indicative of some delocalized carriers in the CO phase together with an energy gap. This is consistent with bulk transport, which shows weakening of the activation gap with cooling below 200K, and indicates the presence of two types of carriers at low temperatures.Comment: 4 pages, 4 figure

    Neutrino Mixing Predictions of a Minimal SO(10) Model with Suppressed Proton Decay

    Get PDF
    During the past year, a minimal renormalizable supersymmetric SO(10) model has been proposed with the following properties: it predicts a naturally stable dark matter and neutrino mixing angles theta_atm and theta_13 while at the same time accommodating CKM CP violation among quarks with no SUSY CP problem. Suppression of proton decay for all allowed values of tan beta strongly restricts the flavor structure of the model making it predictive for other processes as well. We discuss the following predictions of the model in this paper, e.g. down-type quark masses, and neutrino oscillation parameters, U_e3, delta_MNSP, which will be tested by long baseline experiments such as T2K and subsequent experiments using the neutrino beam from JPARC. We also calculate lepton flavor violation and the lepton asymmetry of the Universe in this model.Comment: 22 pages, 11 figure

    Boost Mass and the Mechanics of Accelerated Black Holes

    Full text link
    In this paper we study the concept of the boost mass of a spacetime and investigate how variations in the boost mass enter into the laws of black hole mechanics. We define the boost mass as the gravitational charge associated with an asymptotic boost symmetry, similiar to how the ADM mass is associated with an asymptotic time translation symmetry. In distinction to the ADM mass, the boost mass is a relevant concept when the spacetime has stress energy at infinity, and so the spacetime is not asymptotically flat. We prove a version of the first law which relates the variation in the boost mass to the change in the area of the black hole horizon, plus the change in the area of an acceleration horizon, which is necessarily present with the boost Killing field, as we discuss. The C-metric and Ernst metric are two known analytical solutions to Einstein-Maxwell theory describing accelerating black holes which illustrate these concepts.Comment: 23 pages, A few modifications and clarifications at the referee's suggestions; References added and correcte
    • …
    corecore