31 research outputs found
Biaxial order parameter in the homologous series of orthogonal bent-core smectic liquid crystals
The fundamental parameter of the uniaxial liquid crystalline state that governs nearly all of its physical properties is the primary orientational order parameter (S) for the long axes of molecules with respect to the director. The biaxial liquid crystals (LCs) possess biaxial order parameters depending on the phase symmetry of the system. In this paper we show that in the first approximation a biaxial orthogonal smectic phase can be described by two primary order parameters: S for the long axes and C for the ordering of the short axes of molecules. The temperature dependencies of S and C are obtained by the Haller's extrapolation technique through measurements of the optical birefringence and biaxiality on a nontilted polar antiferroelectric (Sm-APA) phase of a homologous series of LCs built from the bent-core achiral molecules. For such a biaxial smectic phase both S and C, particularly the temperature dependency of the latter, are being experimentally determined. Results show that S in the orthogonal smectic phase composed of bent cores is higher than in Sm-A calamatic LCs and C is also significantly large
Dielectric and Optical Study of Biaxial Bent-Core Nematic Liquid Crystal
We report the observation of biaxial nematic phase in a bent-core molecular system in which the biaxiality exists on a microscopic scale using polarizing microscopy, electro-optics and dielectric spectroscopy. An application of electric field induces a macroscopic biaxiality and therefore electro-optic switching. The observed electro-optic switching is explained in terms of the interaction of the ferroelectric clusters with the electric field. Dielectric spectra of the sample shows existence of low-frequency collective processes related to the microscopic polar clusters. The dielectric constant changes its sign from positive to negative and again to positive values
Dielectric properties of liquid crystalline dimer mixtures exhibiting the nematic and twist-bend nematic phases
A detailed investigation of the thermal and dielectric properties of a series of binary mixtures exhibiting the nematic ( N ) and twist-bend nematic ( N TB ) liquid crystal phases is presented. The mixtures consist of an achiral, dimeric liquid crystal CB7CB, which forms the nematic and twist-bend nematic phases, and a calamitic liquid crystal 5CB, which shows the nematic phase. As the concentration of the calamitic liquid crystal is increased, the transition temperatures decrease linearly, and the width of the nematic phase increases. The enthalpies of phase transitions obtained from DSC measurements show that on increasing the concentration of 5CB in the binary mixtures, the enthalpy associated with the N − N TB phase transitions reduces considerably compared to a clear first-order N − N TB transition in pure CB7CB. The real and imaginary parts of the dielectric permittivity are measured as a function of frequency from 100 Hz to 2 MHz in the nematic and twist-bend nematic phases in planar and homeotropic devices. A significant decrease in the average dielectric permittivity as a function of temperature for mixtures forming the N TB phase is observed. Measurements of the imaginary part of the dielectric permittivity show a relaxation peak in the measured frequency window for all of the mixtures exhibiting the N TB phase. The activation energy associated with this relaxation process is calculated and is shown to remain constant irrespective of the composition of the mixtures
The Eruption of the Candidate Young Star ASASSN-15qi
Outbursts on young stars are usually interpreted as accretion bursts caused by instabilities in the disk or the star-disk connection. However, some protostellar outbursts may not fit into this framework. In this paper, we analyze optical and near-infrared spectra and photometry to characterize the 2015 outburst of the probable young star ASASSN-15qi. The mag brightening in the band was sudden, with an unresolved rise time of less than one day. The outburst decayed exponentially by 1 mag for 6 days and then gradually back to the pre-outburst level after 200 days. The outburst is dominated by emission from K gas. An explosive release of energy accelerated matter from the star in all directions, seen in a spectacular cool, spherical wind with a maximum velocity of 1000 km/s. The wind and hot gas both disappeared as the outburst faded and the source the source returned to its quiescent F-star spectrum. Nebulosity near the star brightened with a delay of 10-20 days. Fluorescent excitation of H is detected in emission from vibrational levels as high as , also with a possible time delay in flux increase. The mid-infrared spectral energy distribution does not indicate the presence of warm dust emission, although the optical photospheric absorption and CO overtone emission could be related to a gaseous disk. Archival photometry reveals a prior outburst in 1976. Although we speculate about possible causes for this outburst, none of the explanations are compelling
Flexoelectric polarization studies in bent-core nematic liquid crystals
The flexoelectric polarization (Pf) of four bent-core nematic liquid crystals (LCs) has been measured using the pyroelectric effect. Hybrid aligned nematic cells are fabricated for measuring the pyroelectric response over the entire range of the nematic phase. It is found that the magnitude of flexoelectric polarization Pf and the sum of the flexoelectric coefficients |e1 +e3| for the bent-core LCs studied here are three to six times higher than for the calamitics. Pf is found to depend on the transverse dipole moment of LC molecules. However,|e1 +e3| values are by no means giant as |e3| alone had been reported for a bent-core nematic system previously. The dependence of the sum of “splay and bend flexoelectric coefficients” is discussed in terms of the shape of the molecule and of the dipole moment directed normal to the molecular axis
Short bent-core molecules: X-ray, polarization, dielectricity, texture and electro-optics investigations
Bent-core liquid crystals based on 1,2,4-oxadiazole as a central unit have been the first mesogens to exhibit a ferroelectric response in the nematic phase. This behavior has been widely recognized as due to the presence of smectic-like polar cybotactic clusters permeating the nematic phase. Unfortunately, these compounds exhibited rather high melting points, about 120 °C, due to the presence of four benzene rings in the molecules. Here we describe the synthesis and physical characterization of a new series of BC mesogens, featuring the same bent core as the previous compounds but shorter outer substituents. By keeping only two benzene rings, we were able to lower the melting points to about 70 °C. However, while X-ray diffraction and dielectric spectroscopy measurements confirm the cybotactic nature of the nematic phase of these compounds, polarization and electro-optical measurements ascribe their polar response to flexoelectricity rather than to spontaneous polarization. Finally, texture investigation suggests the biaxiality of the nematic phase, which is indicated also by conoscopic measurements. These results are important for recognizing size and rigidity limitations in designing bent-core liquid crystal molecules suitable for applications