17 research outputs found

    VITA-D: Cholecalciferol substitution in vitamin D deficient kidney transplant recipients: A randomized, placebo-controlled study to evaluate the post-transplant outcome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Vitamin D does not only regulate calcium homeostasis but also plays an important role as an immune modulator. It influences the immune system through the induction of immune shifts and regulatory cells resulting in immunologic tolerance. As such, vitamin D is thought to exert beneficial effects within the transplant setting, especially in kidney transplant recipients, considering the high prevalence of vitamin D deficiency in kidney transplant recipients.</p> <p>Methods/Design</p> <p>The VITA-D study, a randomized, placebo-controlled, double-blind study with two parallel groups including a total of 200 kidney transplant recipients, is designed to investigate the immunomodulatory and renoprotective effects of cholecalciferol (vitamin D<sub>3</sub>) within the transplant setting. Kidney transplant recipients found to have vitamin D deficiency defined as 25-hydroxyvitamin D<sub>3 </sub>< 50 nmol per liter will be randomly assigned to receive either oral cholecalciferol therapy or placebo and will be followed for one year. Cholecalciferol will be administered at a dose of 6800 International Units daily over a time period of one year.</p> <p>The objective is to evaluate the influence of vitamin D<sub>3 </sub>substitution in vitamin D deficient kidney transplant recipients on the post-transplant outcome. As a primary endpoint glomerular filtration rate calculated with the MDRD formula (modification of diet in renal disease) one year after kidney transplantation will be evaluated. Incidence of acute rejection episodes, and the number and severity of infections (analyzed by means of C-reactive protein) within the first year after transplantation will be monitored as well. As a secondary endpoint the influence of vitamin D<sub>3 </sub>on bone mineral density within the first year post-transplant will be assessed. Three DXA analyses will be performed, one within the first four weeks post-transplant, one five months and one twelve months after kidney transplantation.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov NCT00752401</p

    Structural and functional characterization of a single-chain peptide–MHC molecule that modulates both naive and activated CD8+ T cells

    No full text
    Peptide–MHC (pMHC) multimers, in addition to being tools for tracking and quantifying antigen-specific T cells, can mediate downstream signaling after T-cell receptor engagement. In the absence of costimulation, this can lead to anergy or apoptosis of cognate T cells, a property that could be exploited in the setting of autoimmune disease. Most studies with class I pMHC multimers used noncovalently linked peptides, which can allow unwanted CD8+ T-cell activation as a result of peptide transfer to cellular MHC molecules. To circumvent this problem, and given the role of self-reactive CD8+ T cells in the development of type 1 diabetes, we designed a single-chain pMHC complex (scKd.IGRP) by using the class I MHC molecule H-2Kd and a covalently linked peptide derived from islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP206–214), a well established autoantigen in NOD mice. X-ray diffraction studies revealed that the peptide is presented in the groove of the MHC molecule in canonical fashion, and it was also demonstrated that scKd.IGRP tetramers bound specifically to cognate CD8+ T cells. Tetramer binding induced death of naive T cells and in vitro- and in vivo-differentiated cytotoxic T lymphocytes, and tetramer-treated cytotoxic T lymphocytes showed a diminished IFN-γ response to antigen stimulation. Tetramer accessibility to disease-relevant T cells in vivo was also demonstrated. Our study suggests the potential of single-chain pMHC tetramers as possible therapeutic agents in autoimmune disease. Their ability to affect the fate of naive and activated CD8+ T cells makes them a potential intervention strategy in early and late stages of disease
    corecore